Modern Statistical Methods for Astronomy : With R Applications

個数:
電子版価格
¥12,951
  • 電子版あり

Modern Statistical Methods for Astronomy : With R Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 490 p./サイズ 59 exercises
  • 言語 ENG
  • 商品コード 9780521767279
  • DDC分類 520.15195

Full Description

Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public domain R statistical software environment. The book presents fundamental results of probability theory and statistical inference, before exploring several fields of applied statistics, such as data smoothing, regression, multivariate analysis and classification, treatment of nondetections, time series analysis, and spatial point processes. It applies the methods discussed to contemporary astronomical research datasets using the R statistical software, making it invaluable for graduate students and researchers facing complex data analysis tasks. A link to the author's website for this book can be found at www.cambridge.org/msma. Material available on their website includes datasets, R code and errata.

Contents

1. Introduction; 2. Probability; 3. Statistical inference; 4. Probability distribution functions; 5. Nonparametric statistics; 6. Density estimation or data smoothing; 7. Regression; 8. Multivariate analysis; 9. Clustering, classification and data mining; 10. Nondetections: censored and truncated data; 11. Time series analysis; 12. Spatial point processes; Appendices; Index.

最近チェックした商品