凝集系物理学の基礎(テキスト)<br>Fundamentals of Condensed Matter Physics

個数:
電子版価格 ¥6,732
  • 電書あり

凝集系物理学の基礎(テキスト)
Fundamentals of Condensed Matter Physics

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Hardcover:ハードカバー版/ページ数 446 p.
  • 言語 ENG
  • 商品コード 9780521513319
  • DDC分類 530.41

Full Description


Based on an established course and covering the fundamentals, central areas and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure and many-body interactions as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconducting - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 246 illustrations, 9 tables and 100 homework problems, as well as numerous worked examples, for students to test their understanding. Solutions to the problems for instructors are available at www.cambridge.org/cohenlouie.

Table of Contents

Preface                                            xi
Part I Basic concepts: electrons and phonons
1 Concept of a solid: qualitative 3 (17)
introduction and overview
1.1 Classification of solids 3 (1)
1.2 A first model of a solid: interacting 4 (2)
atoms
1.3 A second model: elementary excitations 6 (1)
1.4 Elementary excitations associated 7 (1)
with solids and liquids
1.5 External probes 8 (1)
1.6 Dispersion curves 9 (4)
1.7 Graphical representation of 13 (1)
elementary excitations and probe particles
1.8 Interactions among particles 13 (7)
2 Electrons in crystals 20 (11)
2.1 General Hamiltonian 20 (1)
2.2 The Born--Oppenheimer adiabatic 21 (1)
approximation
2.3 The mean-field approximation 22 (1)
2.4 The periodic potential approximation 22 (1)
2.5 Translational symmetry, periodicity, 23 (8)
and lattices
3 Electronic energy bands 31 (32)
3.1 Free electron model 31 (2)
3.2 Symmetries and energy bands 33 (6)
3.3 Nearly-free electron model 39 (4)
3.4 Tight-binding model 43 (5)
3.5 Electron (or hole) velocity in a band 48 (4)
and the f-sum rule
3.6 Periodic boundary conditions and 52 (3)
summing over band states
3.7 Energy bands for materials 55 (8)
4 Lattice vibrations and phonons 63 (38)
4.1 Lattice vibrations 63 (8)
4.2 Second quantization and phonons 71 (6)
4.3 Response functions: heat capacity 77 (2)
4.4 Density of states 79 (5)
4.5 Critical points and van Hove 84 (7)
singularities
Part I Problems 91 (10)
Part II Electron interactions, dynamics, and
responses
5 Electron dynamics in crystals 101(18)
5.1 Effective Hamiltonian and Wannier 101(2)
functions
5.2 Electron dynamics in the effective 103(4)
Hamiltonian approach
5.3 Shallow impurity states in 107(1)
semiconductors
5.4 Motion in external fields 108(5)
5.5 Effective mass tensor 113(1)
5.6 Equations of motion, Berry phase, and 114(5)
Berry curvature
6 Many-electron interactions: the 119(22)
homogeneous interacting electron gas and
beyond
6.1 The homogeneous interacting electron 121(2)
gas or jellium model
6.2 Hartree--Fock treatment of the 123(3)
interacting electron gas
6.3 Ground-state energy: Hartree--Fock 126(4)
and beyond
6.4 Electron density and pair-correlation 130(2)
functions
6.5 g(r, r') of the interacting electron 132(3)
gas
6.6 The exchange-correlation hole 135(1)
6.7 The exchange-correlation energy 136(5)
7 Density functional theory (DFT) 141(18)
7.1 The ground state and density 142(2)
functional formalism
7.2 The Kohn--Sham equations 144(6)
7.3 Ab initio pseudopotentials and 150(2)
density functional theory
7.4 Some applications of DFT to 152(7)
electronic, structural, vibrational, and
related ground-state properties
8 The dielectric function for solids 159(26)
8.1 Linear response theory 159(4)
8.2 Self-consistent field framework 163(1)
8.3 The RPA dielectric function within DFT 164(2)
8.4 The homogeneous electron gas 166(3)
8.5 Some simple applications 169(4)
8.6 Some other properties of the 173(5)
dielectric function
Part II Problems 178(7)
Part III Optical and transport phenomena
9 Electronic transitions and optical 185(35)
properties of solids
9.1 Response functions 185(4)
9.2 The Drude model for metals 189(3)
9.3 The transverse dielectric function 192(4)
9.4 Interband optical transitions in 196(5)
semiconductors and insulators
9.5 Electron--hole interaction and 201(19)
exciton effects
10 Electron--phonon interactions 220(15)
10.1 The rigid-ion model 220(4)
10.2 Electron--phonon matrix elements for 224(5)
metals, insulators, and semiconductors
10.3 Polarons 229(6)
11 Dynamics of crystal electrons in a 235(13)
magnetic field
11.1 Free electrons in a uniform magnetic 235(2)
field and Landau levels
11.2 Crystal electrons in a static B-field 237(2)
11.3 Effective mass and real-space orbits 239(2)
11.4 Quantum oscillations: periodicity in 241(7)
1/B and the de Haas--van Alphen effect in
metals
12 Fundamentals of transport phenomena in 248(39)
solids
12.1 Elementary treatment of 248(9)
magnetoresistance and the Hall effect
12.2 The integer quantum Hall effect 257(7)
12.3 The Boltzmann equation formalism and 264(7)
transport in real materials
12.4 Electrical and thermal transport 271(7)
with the linearized Boltzmann equation
Part III Problems 278(9)
Part IV Many-body effects, superconductivity,
magnetism, and lower-dimensional systems
13 Using many-body techniques 287(18)
13.1 General formalism 287(4)
13.2 Interacting Green's functions 291(7)
13.3 Feynman diagrams and many-body 298(7)
perturbation theory techniques
14 Superconductivity 305(67)
14.1 Brief discussion of the experimental 305(6)
background
14.2 Theories of superconductivity 311(38)
14.3 Superconducting quasiparticle 349(7)
tunneling
14.4 Spectroscopies of superconductors 356(4)
14.5 More general solutions of the BCS 360(8)
gap equation
14.6 Field theoretical methods and BCS 368(4)
theory
15 Magnetism 372(21)
15.1 Background 372(1)
15.2 Diamagnetism 372(2)
15.3 Paramagnetism 374(3)
15.4 Ferromagnetism and antiferromagnetism 377(9)
15.5 Magnetism in metals 386(3)
15.6 Magnetic impurities and local 389(4)
correlation effects
16 Reduced-dimensional systems and 393(41)
nanostructures
16.1 Density of states and optical 393(6)
properties
16.2 Ballistic transport and quantization 399(5)
of conductance
16.3 The Landauer formula 404(2)
16.4 Weak coupling and the Coulomb 406(3)
blockade
16.5 Graphene, carbon nanotubes, and 409(12)
graphene nanostructures
16.6 Other quasi-2D materials 421(3)
Part IV Problems 424(10)
References 434(6)
Index 440