The Distribution of the Galaxies : Gravitational Clustering in Cosmology

個数:

The Distribution of the Galaxies : Gravitational Clustering in Cosmology

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Hardcover:ハードカバー版/ページ数 508 p.
  • 言語 ENG
  • 商品コード 9780521394260
  • DDC分類 523.112

基本説明

New in paperback. Hardcover was published in 1999.

Full Description


This topical volume examines one of the leading problems in astronomy - how galaxies cluster in our Universe. This book, first published in 2000, describes gravitational theory, computer simulations and observations related to galaxy distribution functions. It embeds distribution functions in a broader astronomical context, including other exciting contemporary topics such as correlation functions, fractals, bound clusters, topology, percolation and minimal spanning trees. Key results are derived and the necessary gravitational physics provided to ensure the book is self-contained. Throughout the book, theory, computer simulation and observation are carefully interwoven and critically compared. The book also shows how future observations can test the theoretical models for the evolution of galaxy clustering at early times in our Universe. This clear and authoritative volume is written at a level suitable for graduate students, and will be of key interest to astronomers, cosmologists, physicists and applied statisticians.

Table of Contents

Prologue                                           ix
Part I: Historical 1 (54)
1 Cosmogony Myths and Primitive Notions 3 (8)
2 First Qualitative Physics: The 11 (6)
Newton-Bentley Exchange
3 Glimpses of Structure 17 (9)
4 Number Counts and Distributions 26 (7)
5 Seeds of Grand Creation 33 (8)
6 Clusters versus Correlations 41 (7)
7 The Expanding Search for Homogeneity 48 (7)
Part II: Descriptions of Clustering 55 (114)
8 Patterns and Illusions 57 (12)
9 Percolation 69 (11)
10 Minimal Spanning Trees 80 (5)
11 Topology 85 (6)
12 Fractals 91 (9)
13 Bound Clusters 100(21)
13.1 Identification of Bound Clusters, the 100(7)
Virial Theorem, and Dark Matter
13.2 Some Observed Properties of Groups 107(5)
and Clusters
13.3 Physical Processes in Bound Clusters 112(9)
14 Correlation Functions 121(20)
14.1 Definitions 121(7)
14.2 Properties 128(5)
14.3 Measuring (Xi)(r) and W(Theta) 133(3)
14.4 Origin and Evolution of Correlation 136(5)
Functions
15 Distribution Functions 141(28)
15.1 Definitions 141(2)
15.2 Theoretical Results 143(11)
15.3 Numerical Simulations 154(6)
15.4 Observed Galaxy Spatical Distribution 160(3)
Functions
15.5 Observed Galaxy Velocity Distribution 163(6)
Functions
Part III: Gravity and Correlation Functions 169(78)
16 The Growth of Correlations: I. A Fluid 170(25)
Description
16.1 Introduction 170(3)
16.2 The Cosmological Background 173(6)
16.3 Linear Fluid Perturbations and 179(6)
Correlations
16.4 Other Types of Linear Fluid Analyses 185(10)
17 The Growth of Correlations: II. A 195(21)
Particle Description
17.1 Introduction 195(1)
17.2 Liouville's Equation and Entropy 196(9)
17.3 The BBGKY Hierarchy 205(2)
17.4 Gravitational Graininess Initiates 207(4)
Clustering
17.5 Growth of the Two-Galaxy Correlation 211(5)
Function
18 General Correlation Properties 216(11)
18.1 Scaling 216(3)
18.2 Real Space and Redshift Space 219(2)
18.3 Bias 221(2)
18.4 A Relation Among the Amplitude, 223(4)
Range, and Slope of (Xi)
19 Computer Simulations 227(7)
19.1 Direct Methods 227(3)
19.2 Other Methods 230(4)
20 Simulations and Observations of 234(13)
Two-Particle Correlations
20.1 Simulations 234(8)
20.2 Observations 242(5)
Part IV: Gravity and Distribution Functions 247(140)
21 General Properties of Distribution 249(15)
Functions
21.1 Discrete and Continuous Distributions 249(2)
21.2 Expectations, Moments, and Cumulants 251(3)
21.3 Generating and Characteristic 254(4)
Functions
21.4 Convolutions, Combinations, and 258(3)
Compounding
21.5 Infinite Divisibility 261(1)
21.6 Relation to Correlation Functions 262(2)
22 Dynamics of Distribution Functions 264(14)
22.1 Introduction 264(4)
22.2 The Cosmic Energy Equation 268(5)
22.3 Dynamical Implications of the Cosmic 273(5)
Energy Equation
23 Short Review of Basic Thermodynamics 278(23)
23.1 Concepts 278(4)
23.2 Interrelations 282(4)
23.3 Connections with Kinetic Theory and 286(4)
Statistical Mechanics
23.4 The Three Laws of Thermodynamics 290(4)
23.5 Fluctuations and Ensembles 294(4)
23.6 Phase Transitions 298(3)
24 Thermodynamics and Gravity 301(5)
25 Thermodynamic Formulation of the 306(13)
Cosmological Many-Body Problem
25.1 Expansion Removes the Mean 306(2)
Gravitational Field from Local Dynamics
25.2 Extensivity and Gravity 308(1)
25.3 The Energy Equation of State 309(2)
25.4 The Pressure Equation of State 311(4)
25.5 Dynamical Derivation of the Equations 315(2)
of State
25.6 Physical Conditions for 317(2)
Quasi-Equilibrium
26 The Functional Form of b((Eta, T)) 319(8)
26.1 b(Eta, T) is equal to b(Eta, T^(-3)) 319(1)
26.2 The Specific Function b(Eta T^(-3)) 320(5)
26.3 Minimal Clustering 325(2)
27 Derivation of the Spatial Distribution 327(6)
Function
27.1 Entropy and Chemical Potential 327(2)
27.2 The Gravitational Quasi-Equilibrium 329(4)
Distribution f(N)
28 Properties of the Spatial Gravitational 333(33)
Quasi-Equilibrium Distribution
28.1 Physical Limiting Cases and 333(2)
Self-Organized Criticality
28.2 Normalizations, Underdense Regions, 335(8)
and the Shape of the GQED
28.3 Specific Heats, Compressibility, and 343(2)
Instability
28.4 Fluctuations 345(1)
28.5 Projection 346(1)
28.6 Random Selection 346(2)
28.7 Recovery of (Xi)(r) from b(v) 348(1)
28.8 The GQED Generating Function 348(5)
28.9 Scaling and Moments 353(2)
28.10 Bias and Selection 355(6)
28.11 The Multiplicity Function and 361(3)
Related Interpretations
28.12 Relation to Multifractals 364(2)
29 The Velocity Distribution Function 366(6)
30 Evolution of the GQED 372(15)
30.1 Evolution of b(t) 372(5)
30.2 Evolution of Energy, Entropy, and 377(4)
Specific Heat
30.3 Evolution of Correlations 381(6)
Part V: Computer Experiments for Distribution 387(40)
Functions
31 Spatial Distribution Functions 389(27)
31.1 Poisson Initial Conditions 389(14)
31.2 Scale Dependence of b 403(5)
31.3 Evolution of b and Effects of 408(3)
(Omega)(0)
31.4 Non-Poisson Initial Conditions 411(2)
31.5 Models with Dark Matter 413(3)
32 Velocity Distribution Functions 416(11)
Part VI: Observations of Distribution Functions 427(36)
33 Observed Spatial Distribution Functions 429(23)
33.1 Basic Questions 429(1)
33.2 Catalogs: A Brief Sketch 430(5)
33.3 Partial Answers to Basic Questions 435(17)
34 Observed Peculiar Velocity Distribution 452(7)
Functions
35 Observed Evolution of Distribution 459(4)
Functions
Part VII: Future Unfoldings 463(22)
36 Galaxy Merging 465(8)
37 Dark Matter Again 473(4)
38 Initial States 477(2)
39 Ultimate Fates 479(5)
40 Epilogue 484(1)
Bibliography 485(18)
Index 503