Analysis at Urbana : Analysis in Abstract Spaces (London Mathematical Society Lecture Note Series) 〈002〉

個数:

Analysis at Urbana : Analysis in Abstract Spaces (London Mathematical Society Lecture Note Series) 〈002〉

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9780521364379
  • DDC分類 515

Full Description


Throughout the academic year 1986-7, the University of Illinois was host to a symposium on mathematical analysis which was attended by some of the leading figures in the field. This book arises out of this special year and lays emphasis on the synthesis of modern and classical analysis. The contributed articles by the participants cover the gamut of mainstream topics. This book will be essential to researchers in mathematical analysis.

Table of Contents

1. The C1 contractions B. Beauzamy
2. Factorization theorems for integrable
functions H. Bercovici
3. Spectral decompositions and vector-valued
transference E. Berkson and T. Gillespie
4. Vector-valued Hardy spaces from operator
theory O. Blasco
5. Restricted invertibility of matrices and
applications J. Bourgain and L. Tzafiri
6. The commuting B. A. P. for Banach spaces P.
Casazza
7. The minimal normal extension of a function
of a subnormal operator J. Conway
8. Two C*-algebra inequalities G. Corach, H.
Porta and L. Recht
9. The generalised Bochner theorem in algebraic
scattering systems M. Cotlar and C. Sadosky
10. Differential estimates and commutators in
interpolation theory M. Cwikel, B. Jawerth, M.
Milman and R. Rochberg
11. A survey of nest algebras K. Davidson
12. Some notes on non-commutative analysis R.
Kadison
13. Some remarks on interpolation of families
of quasi-Banach spaces N. Kalton
14. An application of Edgar's ordering of
Banach spaces L. Riddle
15. Martingale proofs of a general integral
representation theorem H. Rosenthal.