Analysis at Urbana : Analysis in Function Spaces (London Mathematical Society Lecture Note Series) 〈001〉

個数:

Analysis at Urbana : Analysis in Function Spaces (London Mathematical Society Lecture Note Series) 〈001〉

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9780521364362
  • DDC分類 515

Full Description


Throughout the academic year 1986-87, the University of Illinois was host to a symposium on mathematical analysis which was attended by some of the leading figures in the field. This book arises out of this special year and lays emphasis on the synthesis of modern and classical analysis at the current frontiers of knowledge. The contributed articles by the participants cover the gamut of mainstream topics. This book will be essential to researchers in mathematical analysis.

Contents

1. Membership of Hankel operators on planar domains in unitary ideals J. Arazy; 2. A generalised Marcel Riesz theorem on conjugate functions N. Asmar and E. Hewitt; 3. Some results in analysis related to the law of the iterated logarithm R. Banuelos and C. Moore; 4. Fourier series, mean Lipschitz spaces and bounded mean oscillation P. Bourdon, J. Shapiro and W .Sledd; 5. A remark on the maximal function associated to an analytic vector field J. Bourgain; 6. Hankel operators on HP J. Cima and D. Stegenga; 7. Contractive projections on 1p spaces W. Davis and P. Enflo; 8. Contractive projections onto subsets of L1(0,1) P. Enflo; 9. Some Banach space properties of translation invariant subspaces of LP K. Hare and N. Tomczak-Jaegermann; 10. Random multiplications, random coverings, and multiplicative chaos J.-P. Kahane; 11. Wavelets and operators Y. Meyer; 12. On the structure of the graph of the Franklin analysing wavelet E. Berkson; 13. Boundededness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators A. Pelczynski; 14. Remarks on L2 restriction theorems for Riemann manifolds C. Sogge.