Introduction to Higher-Order Categorical Logic (Cambridge Studies in Advanced Mathematics)

個数:

Introduction to Higher-Order Categorical Logic (Cambridge Studies in Advanced Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9780521356534
  • DDC分類 160

基本説明

Hardcover was published in 1986. Now in paperback.

Full Description

In this book the authors reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher order logic, and cartesian closed categories are essentially the same. In Part II, it is demonstrated that another formulation of higher order logic (intuitionistic type theories) is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language of category theory are given. The authors have included an introduction to category theory and develop the necessary logic as required, making the book essentially self-contained. Detailed historical references are provided throughout, and each section concludes with a set of exercises. Thus it is well-suited for graduate courses and research in mathematics and logic. Researchers in theoretical computer science, artificial intelligence and mathematical linguistics will also find this an accessible introduction to a subject of increasing application to these disciplines.

Contents

Preface; Part I. Introduction to Category Theory: Part II. Cartesian Closed Categories and Calculus: Part III. Type Theory and Toposes: Part IV. Representing Numerical Functions in Various Categories; Bibliography; Author index; Subject index.

最近チェックした商品