Combinatorial Games : Tic-Tac-Toe Theory (Encyclopedia of Mathematics and its Applications)

個数:

Combinatorial Games : Tic-Tac-Toe Theory (Encyclopedia of Mathematics and its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 750 p./サイズ 170 b/w illus., 40 exercises
  • 言語 ENG
  • 商品コード 9780521184755
  • DDC分類 519.3

Full Description

Traditional game theory has been successful at developing strategy in games of incomplete information: when one player knows something that the other does not. But it has little to say about games of complete information, for example, tic-tac-toe, solitaire and hex. The main challenge of combinatorial game theory is to handle combinatorial chaos, where brute force study is impractical. In this comprehensive volume, József Beck shows readers how to escape from the combinatorial chaos via the fake probabilistic method, a game-theoretic adaptation of the probabilistic method in combinatorics. Using this, the author is able to determine the exact results about infinite classes of many games, leading to the discovery of some striking new duality principles. Available for the first time in paperback, it includes a new appendix to address the results that have appeared since the book's original publication.

Contents

Preface; A summary of the book in a nutshell; Part I. Weak Win and Strong Draw: 1. Win vs. weak win; 2. The main result: exact solutions for infinite classes of games; Part II. Basic Potential Technique - Game-Theoretic First and Second Moments: 3. Simple applications; 4. Games and randomness; Part III. Advanced Weak Win - Game-Theoretic Higher Moment: 5. Self-improving potentials; 6. What is the Biased Meta-Conjecture, and why is it so difficult?; Part IV. Advanced Strong Draw - Game-Theoretic Independence: 7. BigGame-SmallGame decomposition; 8. Advanced decomposition; 9. Game-theoretic lattice-numbers; 10. Conclusion; Appendix A. Ramsey numbers; Appendix B. Hales-Jewett theorem: Shelah's proof; Appendix C. A formal treatment of positional games; Appendix D. An informal introduction to game theory; Appendix E. New results; Complete list of the open problems; What kinds of games? A dictionary; Dictionary of the phrases and concepts; References.

最近チェックした商品