射影有限群講義<br>Lectures on Profinite Topics in Group Theory (London Mathematical Society Student Texts)

個数:

射影有限群講義
Lectures on Profinite Topics in Group Theory (London Mathematical Society Student Texts)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 158 p./サイズ 50 exercises
  • 言語 ENG
  • 商品コード 9780521183017
  • DDC分類 512.2

Full Description

In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.

Contents

Preface; Editor's introduction; Part I. An Introduction to Compact p-adic Lie Groups: 1. Introduction; 2. From finite p-groups to compact p-adic Lie groups; 3. Basic notions and facts from point-set topology; 4. First series of exercises; 5. Powerful groups, profinite groups and pro-p groups; 6. Second series of exercises; 7. Uniformly powerful pro-p groups and Zp-Lie lattices; 8. The group GLd(Zp), just-infinite pro-p groups and the Lie correspondence for saturable pro-p groups; 9. Third series of exercises; 10. Representations of compact p-adic Lie groups; References for Part I; Part II. Strong Approximation Methods: 11. Introduction; 12. Algebraic groups; 13. Arithmetic groups and the congruence topology; 14. The strong approximation theorem; 15. Lubotzky's alternative; 16. Applications of Lubotzky's alternative; 17. The Nori-Weisfeiler theorem; 18. Exercises; References for Part II; Part III. A Newcomer's Guide to Zeta Functions of Groups and Rings: 19. Introduction; 20. Local and global zeta functions of groups and rings; 21. Variations on a theme; 22. Open problems and conjectures; 23. Exercises; References for Part III; Index.