Random Matrix Models and their Applications (Mathematical Sciences Research Institute Publications)

個数:

Random Matrix Models and their Applications (Mathematical Sciences Research Institute Publications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9780521175166
  • DDC分類 512.9434

基本説明

New in paperback. Hardcover was published in 2001.

Full Description

Random matrices arise from, and have important applications to, number theory, probability, combinatorics, representation theory, quantum mechanics, solid state physics, quantum field theory, quantum gravity, and many other areas of physics and mathematics. This 2001 volume of surveys and research results, based largely on lectures given at the Spring 1999 MSRI program of the same name, covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its stress on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Contents

1. Symmetrized random permutations Jinho Baik and Eric M. Rains; 2. Hankel determinants as Fredholm determinants Estelle L. Basor, Yang Chen and Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on partitions, Robinson-Schensted-Knuth correspondence, and random matrix ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics: applications to folding and coloring Philippe Di Francesco; 7. Inter-relationships between orthogonal, unitary and symplectic matrix ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random matrices John Harnad; 9. Orthogonal polynomials and random matrix theory Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K. Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin; 14. Integration over angular variables for two coupled matrices G. Mahoux, M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16. Integrable lattices: random matrices and random permutations Pierre Van Moerbeke; 17. Some matrix integrals related to knots and links Paul Zinn-Justin.

最近チェックした商品