Typical Dynamics of Volume Preserving Homeomorphisms (Cambridge Tracts in Mathematics)

個数:

Typical Dynamics of Volume Preserving Homeomorphisms (Cambridge Tracts in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9780521172431
  • DDC分類 514

基本説明

New in paperback. Hardcover was published in 2001.

Full Description

This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley-Zehnder- Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.

Contents

Historical Preface; General outline; Part I. Volume Preserving Homomorphisms of the Cube: 1. Introduction to Parts I and II (compact manifolds); 2. Measure preserving homeomorphisms; 3. Discrete approximations; 4. Transitive homeomorphisms of In and Rn; 5. Fixed points and area preservation; 6. Measure preserving Lusin theorem; 7. Ergodic homeomorphisms; 8. Uniform approximation in G[In, λ] and generic properties in Μ[In, λ]; Part II. Measure Preserving Homeomorphisms of a Compact Manifold: 9. Measures on compact manifolds; 10. Dynamics on compact manifolds; Part III. Measure Preserving Homeomorphisms of a Noncompact Manifold: 11. Introduction to Part III; 12. Ergodic volume preserving homeomorphisms of Rn; 13. Manifolds where ergodic is not generic; 14. Noncompact manifolds and ends; 15. Ergodic homeomorphisms: the results; 16. Ergodic homeomorphisms: proof; 17. Other properties typical in M[X, μ]; Appendix 1. Multiple Rokhlin towers and conjugacy approximation; Appendix 2. Homeomorphic measures; Bibliography; Index.

最近チェックした商品