Probability on Graphs : Random Processes on Graphs and Lattices (Institute of Mathematical Statistics Textbooks)

Probability on Graphs : Random Processes on Graphs and Lattices (Institute of Mathematical Statistics Textbooks)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 247 p./サイズ 45 b/w illus., 90 exercises
  • 言語 ENG
  • 商品コード 9780521147354
  • DDC分類 519

Full Description


This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. Schramm-Lowner evolutions (SLE) arise in various contexts. The choice of topics is strongly motivated by modern applications and focuses on areas that merit further research. Special features include a simple account of Smirnov's proof of Cardy's formula for critical percolation, and a fairly full account of the theory of influence and sharp-thresholds. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Contents

Preface; 1. Random walks on graphs; 2. Uniform spanning tree; 3. Percolation and self-avoiding walk; 4. Association and influence; 5. Further percolation; 6. Contact process; 7. Gibbs states; 8. Random-cluster model; 9. Quantum Ising model; 10. Interacting particle systems; 11. Random graphs; 12. Lorentz gas; References; Index.

最近チェックした商品