The Selected Works of J. Frank Adams: Volume 1

個数:

The Selected Works of J. Frank Adams: Volume 1

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 556 p.
  • 言語 ENG
  • 商品コード 9780521110679
  • DDC分類 514.2

Full Description

J. Frank Adams was one of the world's leading topologists. He solved a number of celebrated problems in algebraic topology, a subject in which he initiated many of the most active areas of research. He wrote a large number of papers during the period 1955-1988, and they are characterised by elegant writing and depth of thought. Few of them have been superseded by later work. This selection, in two volumes, brings together all his major research contributions. They are organised by subject matter rather than in strict chronological order. The first contains papers on: the cobar construction, the Adams spectral sequence, higher-order cohomology operations, and the Hopf invariant one problem; applications of K-theory; generalised homology and cohomology theories. The second volume is mainly concerned with Adams' contributions to: characteristic classes and calculations in K-theory; modules over the Steenrod algebra and their Ext groups; finite H-spaces and compact Lie groups; maps between classifying spaces of compact groups. Every serious student or practitioner of algebraic topology will want to own a copy of these two volumes both as a historical record and as a source of continued reference.

Contents

1. On the chain algebra of a loop space; 2. On the cobar construction; 3. The structure of the Steenrod algebra; 4. On the non-existence theory of elements of Hopf invariant one; 4. Applications of the Groethendieck-Atiyah-Hirzebruch functor K(X); 5. Vector fields on spheres; 6. On complex Stiefel manifolds; 7. On matrices whose real linear combinations are non-singular and correction; 8. On the groups J(X) I, II, III, and IV and correction; 9. K-theory and the Hopf invariant; 10. Geometric dimension of bundles over RPn; 11. Lectures on generalised cohomology; 12. Algebraic topology in the last decade.

最近チェックした商品