Topics in Metric Fixed Point Theory (Cambridge Studies in Advanced Mathematics)

個数:

Topics in Metric Fixed Point Theory (Cambridge Studies in Advanced Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780521064064
  • DDC分類 515.7248

基本説明

Offers the mathematical community an accessible, self-contained document that can be used as an introduction to the subject and its development. Contents - 1. Preliminaries; 2. Banach’s contraction principle; 3. Nonexpansive mappings: introduction; 4. The basic fixed point theorems for nonexpansive mappings; 5. Scaling the convexity of the unit ball; 6. The modulus of convexity and normal structure; 7. Normal structure and smoothness; 8. Conditions involving compactness; 9. Sequential approximation techniques; 10. Weak sequential approximations; 11. Properties of fixed point sets and minimal sets; and more.

Full Description

Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.

Contents

Introduction; 1. Preliminaries; 2. Banach's contraction principle; 3. Nonexpansive mappings: introduction; 4. The basic fixed point theorems for nonexpansive mappings; 5. Scaling the convexity of the unit ball; 6. The modulus of convexity and normal structure; 7. Normal structure and smoothness; 8. Conditions involving compactness; 9. Sequential approximation techniques; 10. Weak sequential approximations; 11. Properties of fixed point sets and minimal sets; 12. Special properties of Hilbert space; 13. Applications to accretivity; 14. Nonstandard methods; 15. Set-valued mappings; 16. Uniformly Lipschitzian mappings; 17. Rotative mappings; 18. The theorems of Brouwer and Schauder; 19. Lipschitzian mappings; 20. Minimal displacement; 21. The retraction problem; References.

最近チェックした商品