Principles of Soil Dynamics (2ND)

個数:
  • ポイントキャンペーン

Principles of Soil Dynamics (2ND)

  • ウェブストア価格 ¥20,027(本体¥18,207)
  • Nelson Engineering(2010/01発売)
  • 外貨定価 UK£ 67.99
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 364pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 584 p.
  • 言語 ENG
  • 商品コード 9780495411352
  • DDC分類 624.15136

Full Description

PRINCIPLES OF SOIL DYNAMICS is an unparalleled reference book designed for an introductory course on Soil Dynamics. Authors Braja M. Das, best selling authority on Geotechnical Engineering, and Ramana V. Gunturi, Dean of the Civil Engineering Department at the India Institute of Technology in New Delhi, present a well revised update of this already well established text. The primary focus of the book is on the applications of soil dynamics and not on the underlying principles. The material covered includes the fundamentals of soil dynamics, dynamic soil properties, foundation vibration, soil liquefaction, pile foundation and slope stability.

Contents

1. INTRODUCTION General. Nature and Type of Dynamic Loading on SoilS. Importance of Soil Dynamics. References. 2. FUNDAMENTALS OF VIBRATION Introduction. Fundamentals of Vibration. System with a Single Degree of Freedom. Free Vibration of a Spring Mass System. Forced Vibration of a SpringMass System. Free Vibration with Viscous Damping. Steady State Forced Vibration with Viscous Damping. Rotating Mass Type Excitation. Determination of Damping Ratio. Vibration Measuring Instrument. System with Two Degrees of Freedom. Vibration of a Mass Spring System. Coupled Translation and Rotation of a Mass Spring System (Free Vibration). Problems. References. 3. WAVES IN ELASTIC MEDIUM Introduction. Stress and Strain. Hooke"s Law. Elastic Stress Waves in a Bar. Longitudinal Elastic Waves in a Bar. Velocity of Particles in the Stressed Zone. Reflection of Elastic Stress Waves at the End of a Bar. Torsional Waves in a Bar. Longitudinal Vibration of Short Bars. Torsional Vibration of Short Bars. Stress Waves in an Infinite Elastic Medium. Equation of Motion in an Elastic Medium. Equations for Stress Waves. General Comments. Stress Waves in Elastic Half-Space. Rayleigh Waves. Displacement of Rayleigh Waves. Attenuation of the Amplitude of Elastic Waves with Distance. References 4. PROPERTIES OF DYNAMICALLY LOADED SOILS Introduction. Laboratory Tests and Results. Shear Strength of Soils under Rapid Loading Conditions. Strength and Deformation Characteristics of Soils under Transient Load. Travel Time Test for Determination of Longitudinal and Shear Wave Velocities (vc and vs). Resonant Column Test. Cyclic Simple Shear Test. Cyclic Torsional Simple Shear Test. Cyclic Triaxial Test. Summary of Cyclic Tests. Field Test Measurements. Reflection and Refraction of Elastic Body Waves-Fundamental Concepts. Seismic Refraction Survey (Horizontal Layering). Refraction Survey in Soils with Inclined Layering. Reflection Survey in Soil (Horizontal Layering). Reflection Survey in Soil (Inclined Layering). Subsoil Exploration by Steady-State Vibration. Soil Exploration by "Shooting Up the Hole," "Shooting Down the Hole," and "Cross-Hole Shooting". Cyclic Plate Load Test. Correlations for Shear Modulus and Damping Ratio. Test Procedures for Measurement of Moduli and Damping Characteristics. Shear Modulus and Damping Ratio in Sand. Correlation of Gmax of Sand with Standard Penetration Resistance. Shear Modulus and Damping Ratio for Gravels. Shear Modulus and Damping Ratio for Clays. Shear Modulus and Damping Ratio for Lightly Cemented Sand. Problems. References. 5. FOUNDATION VIBRATION Introduction. Vertical Vibration of Circular Foundations on Elastic Half-Space-Historical. Development. Analog Solution for Vertical Vibration of Foundations. Calculation Procedure for Foundation Response Vertical Vibration. Rocking Vibration of Foundations. Sliding Vibration of Foundations. Torsional Vibration of Foundations. Comparison of Footing Vibration Tests with Theory. Comments on the Mass Spring Dashpot Analog Used for Solving Foundation Vibration Problems. Coupled Rocking and Sliding Vibration of Rigid Circular Foundations. Vibration of Foundations for Impact Machines. Vibration of Embedded Foundations. Vertical Vibration of Rigid Circular Foundations. Sliding Vibration of Rigid Cylindrical Foundation. Rocking Vibration of Rigid Cylindrical Foundations. Torsional Vibration of Rigid Cylindrical Foundations Vibration Screening. Active and Passive Isolation: Definition. Active Isolation by Use of Open Trenches. Passive Isolation by Use of Open Trenches. Passive Isolation by Use of Piles. Problems. References. 6. DYNAMIC BEARING CAPACITY OF SHALLOW FOUNDATIONS Introduction. Ultimate Dynamic Bearing Capacity. Bearing Capacity in Sand. Bearing Capacity in Clay. Behavior of Foundations under Transient Loads. Experimental Observations of Load Settlement Relationship for Vertical Transient Loading. Seismic Bearing Capacity and Settlement in Granular Soil. Problems. References. 7. EARTHQUAKE AND GROUND VIBRATION Introduction. Definition of Some Earthquake-Related Terms. Earthquake Magnitude. Characteristics of Rock Motion during an Earthquake. Vibration of Horizontal Soil Layers with Linearly Elastic Properties. Other Studies for Vibration of Soil Layers Due to Earthquakes. Equivalent Number of Significant Uniform Stress Cycles for Earthquakes. References. 8. LATERAL EARTH PRESSURE ON RETAINING WALLS Introduction. Mononobe Okabe Active Earth Pressure Theory. Some Comments on the Active Force Equation. Procedure for Obtaining PAE Using Standard Charts of KA. Effect of Various Parameters on the Value of the Active Earth Pressure Coefficient. Graphical Construction for Determination of Active Force, PAE. Laboratory Model Test Results for Active Earth Pressure Coefficient, KAE. Point of Application of the Resultant Active Force, PAE. Design of Gravity Retaining Walls Based on Limited Displacement. Hydrodynamic Effects of Pore Water. Mononobe Okabe Active Earth Pressure Theory for Backfill. Dynamic Passive Force on Retaining Wall. Problems. References 9. COMPRESSIBILITY OF SOILS UNDER DYNAMIC LOADS Introduction. Compaction of Granular Soils: Effect of Vertical Stress and Vertical Acceleration. Settlement of Strip Foundation on Granular Soil under the Effect of Controlled Cyclic Vertical Stress. Settlement of Machine Foundations on Granular Soils Subjected to Vertical Vibration. Settlement of Sand Due to Cyclic Shear Strain. Calculation of Settlement of Dry Sand Layers Subjected to Seismic Effect. Settlement of a Dry Sand Layer Due to Multidirectional Shaking. Problems. References. 10. LIQUEFACTION OF SOIL Introduction. Fundamental Concept of Liquefaction. Laboratory Studies to Simulate Field Conditions for Soil Liquefaction. Dynamic Triaxial Test. General Concepts and Test Procedures. Typical Results from Cyclic Triaxial Test. Influence of Various Parameters on Soil Liquefaction Potential. Development of Standard Curves for Initial Liquefaction. Cyclic Simple Shear Test. General Concepts. Typical Test Results. Rate of Excess Pore Water Pressure Increase. Large-Scale Simple Shear Tests. Development of a Procedure for Determination of Field Liquefaction. Correlation of the Liquefaction Results from Simple Shear and Triaxial Tests. Correlation of the Liquefaction Results from Triaxial Tests to Field Conditions. Zone of Initial Liquefaction in the Field. Relation between Maximum Ground Acceleration and the Relative Density of Sand for Soil Liquefaction. Liquefaction Analysis from Standard Penetration Resistance. Other Correlations for Field Liquefaction Analysis. Remedial Action to Mitigate Liquefaction. Problems. References. 11. MACHINE FOUNDATIONS ON PILES Introduction. Piles Subjected to Vertical Vibration. End-Bearing Piles. Friction Piles. Sliding, Rocking, and Torsional Vibration. Sliding and Rocking Vibration. Torsional Vibration of Embedded Piles. Problems. References. 12. SEISMIC STABILITY OF EARTH EMBANKMENTS Introduction. Free Vibration of Earth Embankments. Forced Vibration of an Earth Embankment. Velocity and Acceleration Spectra. Approximate Method for Evaluation of Maximum Crest. Acceleration and Natural Period of Embankments. Fundamental Concepts of Stability Analysis. Pseudostatic Analysis. Clay Slopes -Koppula"s Analysis. Slopes - Majumdar"s Analysis. Slopes-Prater"s Analysis. Slopes-Conventional Method of Slices. Simplified Procedure for Estimation of Earthquake-Induced Deformation. Problems. References Appendix A-Primary and Secondary Forces of Single-Cylinder Engines Index

最近チェックした商品