生物情報学・計算生物学のためのグリッドコンピューティング<br>Grid Computing for Bioinformatics and Computational Biology (Wiley Series in Bioinformatics)

個数:

生物情報学・計算生物学のためのグリッドコンピューティング
Grid Computing for Bioinformatics and Computational Biology (Wiley Series in Bioinformatics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 392 p.
  • 言語 ENG
  • 商品コード 9780471784098
  • DDC分類 570.285

基本説明

Specifically discusses bio-ontology and data mining; data visualization; DNA assembly, clustering, and mapping; molecular evolution and phylogeny.

Full Description

The only single, up-to-date source for Grid issues in bioinformatics and biology

Bioinformatics is fast emerging as an important discipline for academic research and industrial applications, creating a need for the use of Grid computing techniques for large-scale distributed applications. This book successfully presents Grid algorithms and their real-world applications, provides details on modern and ongoing research, and explores software frameworks that integrate bioinformatics and computational biology.

Additional coverage includes:
*

Bio-ontology and data mining
*

Data visualization
*

DNA assembly, clustering, and mapping
*

Molecular evolution and phylogeny
*

Gene expression and micro-arrays
*

Molecular modeling and simulation
*

Sequence search and alignment
*

Protein structure prediction
*

Grid infrastructure, middleware, and tools for bio data

Grid Computing for Bioinformatics and Computational Biology is an indispensable resource for professionals in several research and development communities including bioinformatics, computational biology, Grid computing, data mining, and more. It also serves as an ideal textbook for undergraduate- and graduate-level courses in bioinformatics and Grid computing.

Contents

Preface. Chapter 1: Open computing Grid for molecular sciences (M. Romberg, E. Benfenati, and W. Dubitzky).

Chapter 2: Designing high-performance concurrent strategies for biological sequence alignment problems on networked computing platforms (B. Veeravalli).

Chapter 3: Optimized cluster-enabled HMMER searches (J. P. Walters, J. Landman, and V. Chaudhary).

Chapter 4: Expanding the rich of Grid computing: combining Globus and BOINC based systems (D. S. Myers, A. L. Bazinet, and M. P. Cummings).

Chapter 5: Hierarchical Grid computing for high performance bioinformatics (B. Schmidt, C.X. Chen and W. Liu).

Chapter 6:Multiple sequence alignment and phylogenetic inference (D. Trystram, and J. Zola).

Chapter 7: Data syndication techniques for bioinformatics applications (C. Wang, A. Y. Zomaya, and B. B. Zhou).

Chapter 8: Conformational sampling and docking on Grids (A. Tantar, N. Melab, and E-G. Talbi).

Chapter 9: Deployment of Grid life sciences applications (V. Breton, N. Jacq, V. Kasam, and J. Salzemann).

Chapter 10: Grid-based interactive decision support in biomedicine (A. Tirado-Ramos, P. M. A. Sloot, and M. Bubak).

Chapter 11: Database-driven grid computing and distributed web applications: a comparison (H. De Sterck, A.Papo, C. Zhang, M. Hamady, and R. Knight).

Chapter 12: A semantic mediation architecture for a clinical Data Grid (K. Kumpf, A. Wohrer, S. Benkner, G. Engelbrecht, and Jochen Fingberg).

Chapter 13: Bioinformatics applications in Grid computing environments (A. Boukerche, A. C. Magalhaes and Alves De Melo).

Chapter 14: Recent advances in solving the protein threading problem (R. Andonov, G. Collet, J-F. Gibrat, A. Marin, V. Poirriez, and N. Yanev).

Chapter 15: DNA fragment assembly using Grid systems (A. J. Nebro, G. Luque, and E. Alba).

Chapter 16: Seeing is knowing: Visualization of parameter-parameter dependencies in biomedical network models (A. Konagaya, R. Azuma, R. Umetsu, S. Ohki, F. Konishi, K. Matsumura, and S. Yoshikawa).