Bootstrap Methods : A Guide for Pracitioners and Researchers (Wiley Series in Probability and Statistics) (2ND)

個数:
電子版価格
¥22,733
  • 電子版あり

Bootstrap Methods : A Guide for Pracitioners and Researchers (Wiley Series in Probability and Statistics) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9780471756217
  • DDC分類 519.544

Full Description

A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics.

Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features:



The addition of a second, extended bibliography devoted solely to publications from 1999-2007, which is a valuable collection of references on the latest research in the field


A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials


A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks


Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data


New examples and illustrations as well as extensive historical notes at the end of each chapter



With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.

Contents

Preface to Second Edition. Preface to First Edition.

Acknowledgments.

1. What Is Bootstrapping?

1.1. Background.

1.2. Introduction.

1.3. Wide Range of Applications.

1.4. Historical Notes.

1.5. Summary.

2. Estimation.

2.1. Estimating Bias.

2.2. Estimating Location and Dispersion.

2.3. Historical Notes.

3. Confi dence Sets and Hypothesis Testing.

3.1. Confi dence Sets.

3.2. Relationship Between Confi dence Intervals and Tests of Hypotheses.


3.3. Hypothesis Testing Problems.

3.4. An Application of Bootstrap Confi dence Intervals to Binary Dose-Response Modeling.

3.5. Historical Notes.

4. Regression Analysis.

4.1. Linear Models.

4.2. Nonlinear Models.

4.3. Nonparametric Models.

4.4. Historical Notes.

5. Forecasting and Time Series Analysis.

5.1. Methods of Forecasting.

5.2. Time Series Models.

5.3. When Does Bootstrapping Help with Prediction Intervals?

5.4. Model-Based Versus Block Resampling.

5.5. Explosive Autoregressive Processes.

5.6. Bootstrapping-Stationary Arma Models.

5.7. Frequency-Based Approaches.

5.8. Sieve Bootstrap.

5.9. Historical Notes.

6. Which Resampling Method Should You Use?

6.1. Related Methods.

6.2. Bootstrap Variants.


7. Effi cient and Effective Simulation.

7.1. How Many Replications?

7.2. Variance Reduction Methods.

7.3. When Can Monte Carlo Be Avoided?

7.4. Historical Notes.

8. Special Topics.

8.1. Spatial Data.

8.2. Subset Selection.

8.3. Determining the Number of Distributions in a Mixture Model.

8.4. Censored Data.

8.5. p-Value Adjustment.

8.6. Bioequivalence Applications.

8.7. Process Capability Indices.

8.8. Missing Data.

8.9. Point Processes.

8.10. Lattice Variables.

8.11. Historical Notes.

9. When Bootstrapping Fails Along with Remedies for Failures.


9.1. Too Small of a Sample Size.

9.2. Distributions with Infi nite Moments.

9.3. Estimating Extreme Values.

9.4. Survey Sampling.

9.5. Data Sequences that Are M-Dependent.

9.6. Unstable Autoregressive Processes.

9.7. Long-Range Dependence.

9.8. Bootstrap Diagnostics.

9.9. Historical Notes.

Bibliography 1 (Prior to 1999).

Bibliography 2 (1999-2007).

Author Index.

Subject Index.

最近チェックした商品