パターン認識ニューラルネットワークの統計的アプローチ<br>A Statistical Approach to Neural Networks for Pattern Recognition (Wiley Series in Computational Statistics)

個数:

パターン認識ニューラルネットワークの統計的アプローチ
A Statistical Approach to Neural Networks for Pattern Recognition (Wiley Series in Computational Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 268 p.
  • 言語 ENG
  • 商品コード 9780471741084
  • DDC分類 006.32

基本説明

Presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models, in a language that is familiar to practicing statisticians.

Full Description

An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as:

How robust is the model to outliers?

Could the model be made more robust?

Which points will have a high leverage?

What are good starting values for the fitting algorithm?

Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature.

Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Contents

Notation and Code Examples. Preface.

Acknowledgments.

1. Introduction.

2. The Multi-Layer Perception Model.

3. Linear Discriminant Analysis.

4. Activation and Penalty Functions.

5. Model Fitting and Evaluation.

6. The Task-Based MLP.

7. Incorporating Spatial Information into an MLP Classifier.

8. Influence Curves for the Multi-Layer Perceptron Classifier.

9. The Sensitivity Curves of the MLP Classifier.

10. A Robust Fitting Procedure for MLP Models.

11. Smoothed Weights.

12. Translation Invariance.

13. Fixed-slope Training.

Appendix A. Function Minimization.

Appendix B. Maximum Values of the Influence Curve.

Topic Index.

最近チェックした商品