エンジニアリング最適化(第2版)<br>Engineering Optimization Methods and Applications (2ND)

個数:

エンジニアリング最適化(第2版)
Engineering Optimization Methods and Applications (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 688 p.
  • 言語 ENG
  • 商品コード 9780471558149
  • DDC分類 620.0042

基本説明

Surveys all the important families of optimization methods, from those applicable to the minimization of a single-variable function to those most suited for large-scale nonlinear constrained problems.

Full Description

The classic introduction to engineering optimization theory and practice--now expanded and updated


Engineering optimization helps engineers zero in on the most effective, efficient solutions to problems. This text provides a practical, real-world understanding of engineering optimization. Rather than belaboring underlying proofs and mathematical derivations, it emphasizes optimization methodology, focusing on techniques and stratagems relevant to engineering applications in design, operations, and analysis. It surveys diverse optimization methods, ranging from those applicable to the minimization of a single-variable function to those most suitable for large-scale, nonlinear constrained problems. New material covered includes the duality theory, interior point methods for solving LP problems, the generalized Lagrange multiplier method and generalization of convex functions, and goal programming for solving multi-objective optimization problems. A practical, hands-on reference and text, Engineering Optimization, Second Edition covers:
* Practical issues, such as model formulation, implementation, starting point generation, and more
* Current, state-of-the-art optimization software
* Three engineering case studies plus numerous examples from chemical, industrial, and mechanical engineering
* Both classical methods and new techniques, such as successive quadratic programming, interior point methods, and goal programming

Excellent for self-study and as a reference for engineering professionals, this Second Edition is also ideal for senior and graduate courses on engineering optimization, including television and online instruction, as well as for in-plant training.

Contents

Preface.

1 Introduction to Optimization.

1.1 Requirements for the Application of Optimization Methods.

1.2 Applications of Optimization in Engineering.

1.3 Structure of Optimization Problems.

1.4 Scope of This Book.

References.

2 Functions of a Single Variable.

2.1 Properties of Single-Variable Functions.

2.2 Optimality Criteria.

2.3 Region Elimination Methods.

2.4 Polynomial Approximation or Point Estimation Methods.

2.5 Methods Requiring Derivatives.

2.6 Comparison of Methods.

2.7 Summary.

References.

Problems.

3 Functions of Several Variables.

3.1 Optimality Criteria.

3.2 Direct-Search Methods.

3.3 Gradient-Based Methods.

3.4 Comparison of Methods and Numerical Results.

3.5 Summary.

References.

Problems.

4 Linear Programming.

4.1 Formulation of Linear Programming Models.

4.2 Graphical Solution of Linear Programs in Two Variables.

4.3 Linear Program in Standard Form.

4.5 Computer Solution of Linear Programs.

4.5.1 Computer Codes.

4.6 Sensitivity Analysis in Linear Programming.

4.7 Applications.

4.8 Additional Topics in Linear Programming.

4.9 Summary.

References.

Problems.

5 Constrained Optimality Criteria.

5.1 Equality-Constrained Problems.

5.2 Lagrange Multipliers.

5.3 Economic Interpretation of Lagrange Multipliers.

5.4 Kuhn-Tucker Conditions.

5.5 Kuhn-Tucker Theorems.

5.6 Saddlepoint Conditions.

5.7 Second-Order Optimality Conditions.

5.8 Generalized Lagrange Multiplier Method.

5.9 Generalization of Convex Functions.

5.10 Summary.

References.

Problems.

6 Transformation Methods.

6.1 Penalty Concept.

6.2 Algorithms, Codes, and Other Contributions.

6.3 Method of Multipliers.

6.4 Summary.

References.

Problems.

7 Constrained Direct Search.

7.1 Problem Preparation.

7.2 Adaptations of Unconstrained Search Methods.

7.3 Random-Search Methods.

7.4 Summary.

References.

Problems.

8 Linearization Methods for Constrained Problems.

8.1 Direct Use of Successive Linear Programs.

8.2 Separable Programming.

8.3 Summary.

References.

Problems.

9 Direction Generation Methods Based on Linearization.

9.1 Method of Feasible Directions.

9.2 Simplex Extensions for Linearly Constrained Problems.

9.3 Generalized Reduced Gradient Method.

9.4 Design Application.

9.5 Summary.

References.

Problems.

10 Quadratic Approximation Methods for Constrained Problems.

10.1 Direct Quadratic Approximation.

10.2 Quadratic Approximation of the Lagrangian Function.

10.3 Variable Metric Methods for Constrained Optimization.

10.4 Discussion.

10.5 Summary.

References.

Problems.

11 Structured Problems and Algorithms.

11.1 Integer Programming.

11.2 Quadratic Programming.

11.3 Complementary Pivot Problems.

11.4 Goal Programming.

11.5 Summary.

References.

Problems.

12 Comparison of Constrained Optimization Methods.

12.1 Software Availability.

12.2 A Comparison Philosophy.

12.3 Brief History of Classical Comparative Experiments.

12.4 Summary.

References.

13 Strategies for Optimization Studies.

13.1 Model Formulation.

13.2 Problem Implementation.

13.3 Solution Evaluation.

13.4 Summary.

References.

Problems.

14 Engineering Case Studies.

14.1 Optimal Location of Coal-Blending Plants by Mixed-Integer

Programming.

14.2 Optimization of an Ethylene Glycol-Ethylene Oxide Process.

14.3 Optimal Design of a Compressed Air Energy Storage System.

14.4 Summary.

References.

Appendix A Review of Linear Algebra.

A.1 Set Theory.

A.2 Vectors.

A.3 Matrices.

A.3.1 Matrix Operations.

A.3.2 Determinant of a Square Matrix.

A.3.3 Inverse of a Matrix.

A.3.4 Condition of a Matrix.

A.3.5 Sparse Matrix.

A.4 Quadratic Forms.

A.4.1 Principal Minor.

A.4.2 Completing the Square.

A.5 Convex Sets.

Appendix B Convex and Concave Functions.

Appendix C Gauss-Jordan Elimination Scheme.

Author Index.

Subject Index.

最近チェックした商品