社会科学者のための統計計算における数値問題<br>Numerical Issues in Statistical Computing for the Social Scientist (Wiley Series in Probability and Statistics)

個数:

社会科学者のための統計計算における数値問題
Numerical Issues in Statistical Computing for the Social Scientist (Wiley Series in Probability and Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 323 p.
  • 言語 ENG
  • 商品コード 9780471236337
  • DDC分類 519.5

Full Description


At last-a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field.Highlights include:* A focus on problems occurring in maximum likelihood estimation* Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB(r))* A guide to choosing accurate statistical packages* Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis* Emphasis on specific numerical problems, statistical procedures, and their applications in the field* Replications and re-analysis of published social science research, using innovative numerical methods* Key numerical estimation issues along with the means of avoiding common pitfalls* A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.

Contents

Preface. 1. IntroductionSources of Inaccuracy in Statistical Computation. 3. Evaluating Statistical Software. 4. Robust Inference. 5. Numerical Issues in Markov Chain Monte Carlo Estimation. 6. Numerical Issues Involved in Hessian Matrices (Jeff Gill & Gary King). 7. Numerical Behavior of King's EI Method. 8. Some Details of Nonlinear Estimation (B. D. McCullough). 9. Spatial Regression Models (James P. LeSage). 10. Convergence Problems in Logistic Regression (Paul Allison). 11. Recommendations for Replication and Accurate Analysis. Bibliography. Author Index. Subject Index.