Modern Experimental Design (Wiley Series in Probability and Statistics)

個数:

Modern Experimental Design (Wiley Series in Probability and Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 593 p.
  • 言語 ENG
  • 商品コード 9780471210771
  • DDC分類 519.57

基本説明

Covers a wide range of topics, including some that have received increased attention in recent years, such as hard-to-change factors, uniform designs, and more.

Full Description

A complete and well-balanced introduction to modern experimental design Using current research and discussion of the topic along with clear applications, Modern Experimental Design highlights the guiding role of statistical principles in experimental design construction. This text can serve as both an applied introduction as well as a concise review of the essential types of experimental designs and their applications.

Topical coverage includes designs containing one or multiple factors, designs with at least one blocking factor, split-unit designs and their variations as well as supersaturated and Plackett-Burman designs. In addition, the text contains extensive treatment of:



Conditional effects analysis as a proposed general method of analysis
Multiresponse optimization
Space-filling designs, including Latin hypercube and uniform designs
Restricted regions of operability and debarred observations
Analysis of Means (ANOM) used to analyze data from various types of designs
The application of available software, including Design-Expert, JMP, and MINITAB

This text provides thorough coverage of the topic while also introducing the reader to new approaches. Using a large number of references with detailed analyses of datasets, Modern Experimental Design works as a well-rounded learning tool for beginners as well as a valuable resource for practitioners.

Contents

Preface. 1. Introduction.

1.1 Experiments All Around Us.

1.2 Objectives for Experimental Designs.

1.3 Planned Experimentation versus use of Observational Data.

1.4 Basic Design Concepts.

1.5 Terminology.

1.6 Steps for the Design of Experiments.

1.7 Processes Should Ideally be in a State of Statistical Control.

1.8 Types of Experimental Designs.

1.9 Analysis of Means.

1.10 Missing Data.

1.11 Experimental Designs and Six Sigma.

1.12 Quasi-Experimental Design.

1.13 Summary.

 2. Completely Randomized Design.

2.1 completely Randomized Design.

2.2 Analysis of Means.

2.3 Software for Experimental Design.

2.4 Missing Values.

2.5 Summary.

3. Designs that Incorporate Extraneous (Blocking) Factors.

3.1 Randomized Block Design.

3.2 Incomplete Block Designs.

Graeco-Latin Square Design.

3.5 Youden Squares.

3.6 Missing Values.

3.7 Software.

3.8 Summary.

4. Full Factorial Designs with Two Levels.

4.1 The nature of Factorial Designs.

4.2 The Deleterious Effects of Interactions.

4.3 Effect Estimates.

4.4 Why Not One-Factor-at-a-Time Designs?

4.5 ANOVA Table for Unreplicated Two-factor Design?

4.6 The 23 Design.

4.7 Built-in Replication.

4.8 Multiple Readings versus Replicates.

4.9 Reality versus Textbook Examples.

4.10 Bad data in Factorial Designs.

4.11 Normal Probability Plot Methods.

4.12 Missing Data in Factorial Designs.

4.13 Inaccurate Levels in Factorial Designs.

4.14 Checking for Statistical Control.

4.15 Blocking 2k Designs.

4.16 The Role of Expected Mean Squares in Experimental Design.

4.17 Hypothesis Tests with Only Random Factors in 2k Designs? Avoid Them!

4.18 Hierarchical versus Nonhierarchical Models.

4.19 Hard-to-Change factors.

4.20 Factors Not reset.

4.21 Detecting Dispersion Effects.

4.22 Software.

4.23 Summary.

5. Fractional factorial Designs with Two-Levels.

5.1 2k-1 Designs.

5.2 2k-2 Designs.

5.3 Designs with k & p = 16.

5.4 Utility of Small Fractional factorials vis-à-vis Normal Probability Plots.

5.5 Design Efficiency.

5.6 Retrieving a Lost Defining Relation.

5.7 Minimum Aberration Designs and Minimum Confounded Effects Designs.

5.8 Blocking Factorial Design.

5.9 Foldover Designs.

5.10 John's ¾ Designs.

5.11 Projective Properties of 2k-p Designs.

5.12 Small Fractions and Irregular Designs.

5.13 An Example of Sequential Experimentation.

5.14 Inadvertent Nonorthogonality—Case Study.

5.15 Fractional factorial Designs for Natural Subsets of factors.

5.16 Relationship Between Fractional Factorials and Latin Squares.

5.17 Alternatives to Fractional Factorials.

5.18 Missing and Bad data.

5.19 Plackett-Burman Designs.

5.20 Software.

5.21 Summary.

6. Designs With More Than Two Levels.

6.1 3k Designs.

6.2 Conditional Effects.

6.3 3k-p Designs.

6.4 Mixed factorials.

6.5 Mixed Fractional Factorials.

6.6 Orthogonal Arrays with Mixed levels.

6.7 Minimum Aberration Designs and Minimum Confounded Effects Designs.

6.8 Four or More Levels.

6.9 Software.

6.10 Catalog of Designs.

6.11 Summary.

7. Nested Designs.

7.1 Various Examples.

7.2 Software Shortcomings.

7.3 Staggered Nested Designs.

7.4 Nested and Staggered Nested Designs with factorial Structure.

7.5 Estimating Variance Components.

7.6 ANOM for Nested Designs?

7.7 Summary.

8. Robust Designs.

8.1 "Taguchi Designs?"

8.2 Identification of Dispersion Effects.

8.3 Designs with Noise factors.

8.4 Product Array, Combined Array, or Compound Array?

8.5 Software.

8.6 Further Reading.

8.7 Summary.

9. Split-Unit, Split-Lot, and Related Designs.

9.1 Split-Unit Design.

9.2 Split-Lot Design.

9.3 Commonalities and Differences Between these Designs.

9.4 Software.

9.5 Summary.

10. Response Surface Designs.

10.1 Response Surface Experimentation: One Design or More Than One?

10.2 Which Designs?

10.3 Classical Response Surface Designs versus Alternatives.

10.4 Methods of Steepest Ascent (Descent).

10.5 Central Composite Designs.

10.6 Properties of Space-Filling Designs.

10.7 Applications of Uniform Designs.

10.8 Box-Behnken Designs.

10.9 Conditional Effects?

10.10 Other Response Surface Designs.

10.11 Blocking Response Surface Designs.

10.12 Comparison of Designs.

10.13 Analyzing the Fitted Surface.

10.14 Response Surface Designs for Computer Simulations.

10.15 ANOM with Response Surface Designs?

10.16 Further reading.

10.17 The Present and Future Direction of response Surface Designs.

10.18 Software.

10.19 Catalogs of Designs.

10.20 Summary.

11. Repeated Measure Designs.

  11.1 One factor.

11.2 More Than One Factor.

11.3 Crossover Designs.

11.4 Designs for Carryover Effects.

11.5 How Many Repeated Measures?

11.6 Further Reading.

11.7 Software.

11.8 Summary.

12. Multiple Responses.

12.1 Overlaying Contour Plots.

12.2 Seeking Multiple Response Optimization with Desirability Functions.

12.3 Dual response Optimization.

  12.4 Designs Used with Multiple Responses.

12.5 Applications.

12.6 Multiple Response Optimization variations.

12.7 The Importance of Analysis.

12.8 Software.

12.9 Summary.

13. Miscellaneous Design Topics.

13.1 One-Factor-at-a-Time Designs.

13.2 Cotter Designs.

13.3 Rotation Designs.

13.4 Screening Designs.

13.5 Design of Experiments for Analytic Studies.

13.6 Equileverage Designs.

13.7 Optimal Designs.

13.8 Designs for Restricted Regions of Operability.

13.9 Space-Filling, Designs.

13.10 Trend-Free Designs.

13.11 Cost-Minimizing Designs.

13.12 Mixture Designs.

13.13 Design of Measurement Capability Studies.

13.14 Design of Computer Experiments.

13.15 Design of Experiments for Categorical Response variables.

13.16 Weighing Designs and Calibration Designs.

13.17 Designs for Assessing the Capability of a System.

13.18 Designs for Nonlinear Models.

13.19 Model-Robust Designs.

13.20 Designs and Analyses for Non-normal Responses.

13.21 Design of Microarray Experiments.

13.22 Multi-Vari Plot.

13.23 Evolutionary Operation.

13.24 Software.

13.25 Summary.

14. Tying It All Together.

14.1 Training for Experimental Design Use.

Answers to Selected Exercises.

Appendix: Statistical Tables.

Author Inde.

Subject Index.