法科学におけるデータ解析<br>Data Analysis in Forensic Science : A Bayesian Decision Perspective (Statistics in Practice)

個数:

法科学におけるデータ解析
Data Analysis in Forensic Science : A Bayesian Decision Perspective (Statistics in Practice)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 367 p.
  • 言語 ENG
  • 商品コード 9780470998359
  • DDC分類 363.2501519542

Full Description

This is the first text to examine the use of statistical methods in forensic science and bayesian statistics in combination. The book is split into two parts: Part One concentrates on the philosophies of statistical inference. Chapter One examines the differences between the frequentist, the likelihood and the Bayesian perspectives, before Chapter Two explores the Bayesian decision-theoretic perspective further, and looks at the benefits it carries.

Part Two then introduces the reader to the practical aspects involved: the application, interpretation, summary and presentation of data analyses are all examined from a Bayesian decision-theoretic perspective. A wide range of statistical methods, essential in the analysis of forensic scientific data is explored. These include the comparison of allele proportions in populations, the comparison of means, the choice of sampling size, and the discrimination of items of evidence of unknown origin into predefined populations.

Throughout this practical appraisal there are a wide variety of examples taken from the routine work of forensic scientists. These applications are demonstrated in the ever-more popular R language. The reader is taken through these applied examples in a step-by-step approach, discussing the methods at each stage.

Contents

Foreword. Preface.

I The Foundations of Inference and Decision in Forensic Science.

1 Introduction.

1.1 The Inevitability of Uncertainty.

1.2 Desiderata in Evidential Assessment.

1.3 The Importance of the Propositional Framework and the Nature of Evidential Assessment.

1.4 From Desiderata to Applications.

1.5 The Bayesian Core of Forensic Science.

1.6 Structure of the Book.

2 Scientific Reasoning and Decision Making.

2.1 Coherent Reasoning Under Uncertainty.

2.2 Coherent Decision Making Under Uncertainty of Reasoning.

2.3 Scientific Reasoning as Coherent Decision Making.

2.4 Forensic Reasoning as Coherent Decision Making.

3 Concepts of Statistical Science and Decision Theory.

3.1 Random Variables and Distribution Functions.

3.2 Statistical Inference and Decision Theory.

3.3 The Bayesian Paradigm.

3.4 Bayesian Decision Theory.

3.5 R Code.

II Forensic Data Analysis.

4 Point Estimation.

4.1 Introduction.

4.2 Bayesian Decision for a Proportion.

4.3 Bayesian Decision for a Poisson Mean.

4.4 Bayesian Decision for Normal Mean.

4.5 R Code.

5 Credible Intervals.

5.1 Introduction.

5.2 Credible Intervals.

5.3 Decision-Theoretic Evaluation of Credible Intervals.

5.4 R Code.

6 Hypothesis Testing.

6.1 Introduction.

6.2 Bayesian Hypothesis Testing.

6.3 One-sided testing.

6.4 Two-Sided Testing.

6.5 R Code.

7 Sampling.

7.1 Introduction.

7.2 Sampling Inspection.

7.3 Graphical Models for Sampling Inspection.

7.4 Sampling Inspection under a Decision-Theoretic Approach.

7.5 R Code.

8 Classification of Observations.

8.1 Introduction.

8.2 Standards of Coherent Classification.

8.3 Comparing Models using Discrete Data.

8.4 Comparison of Models using Continuous Data.

8.5 Non-Normal Distributions and Cocaine on Bank Notes.

8.6 A note on Multivariate Continuous Data.

8.7 R Code.

9 Bayesian Forensic Data Analysis: Conclusions and Implications.

9.1 Introduction.

9.2 What is the Past and Current Position of Statistics in Forensic Science?

9.3 Why Should Forensic Scientists Conform to a Bayesian Framework for Inference and Decision Making?

9.4 Why Regard Probability as a Personal Degree of Belief?

9.5 Why Should Scientists be Aware of Decision Analysis?

9.6 How to Implement Bayesian Inference and Decision Analysis?

A Discrete Distributions.

B Continuous Distributions.

Bibliography.

Author Index.

Subject Index.

最近チェックした商品