有限要素解析入門<br>Introduction to Finite Element Analysis : Formulation, Verification and Validation (Wiley Series in Computational Mechanics)

個数:
電子版価格
¥17,487
  • 電子版あり

有限要素解析入門
Introduction to Finite Element Analysis : Formulation, Verification and Validation (Wiley Series in Computational Mechanics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 364 p.
  • 言語 ENG
  • 商品コード 9780470977286
  • DDC分類 620.00151825

Full Description

When using numerical simulation to make a decision, how can its reliability be determined? What are the common pitfalls and mistakes when assessing the trustworthiness of computed information, and how can they be avoided? Whenever numerical simulation is employed in connection with engineering decision-making, there is an implied expectation of reliability: one cannot base decisions on computed information without believing that information is reliable enough to support those decisions. Using mathematical models to show the reliability of computer-generated information is an essential part of any modelling effort.

Giving users of finite element analysis (FEA) software an introduction to verification and validation procedures, this book thoroughly covers the fundamentals of assuring reliability in numerical simulation. The renowned authors systematically guide readers through the basic theory and algorithmic structure of the finite element method, using helpful examples and exercises throughout.



Delivers the tools needed to have a working knowledge of the finite element method
Illustrates the concepts and procedures of verification and validation 
Explains the process of conceptualization supported by virtual experimentation
Describes the convergence characteristics of the h-, p- and hp-methods 
Covers the hierarchic view of mathematical models and finite element spaces 
Uses examples and exercises which illustrate the techniques and procedures of quality assurance 
Ideal for mechanical and structural engineering students, practicing engineers and applied mathematicians
Includes parameter-controlled examples of solved problems in a companion website (www.wiley.com/go/szabo)

Contents

About the Authors. Series Preface.

Preface.

1 Introduction.

1.1 Numerical simulation.

1.2 Why is numerical accuracy important?

1.3 Chapter summary.

2 An outline of the finite element method.

2.1 Mathematical models in one dimension.

2.2 Approximate solution.

2.3 Generalized formulation in one dimension.

2.4 Finite element approximations.

2.5 FEM in one dimension.

2.6 Properties of the generalized formulation.

2.7 Error estimation based on extrapolation.

2.8 Extraction methods.

2.9 Laboratory exercises.

2.10 Chapter summary.

3 Formulation of mathematical models.

3.1 Notation.

3.2 Heat conduction.

3.3 The scalar elliptic boundary value problem.

3.4 Linear elasticity.

3.5 Incompressible elastic materials.

3.6 Stokes' flow.

3.7 The hierarchic view of mathematical models.

3.8 Chapter summary.

4 Generalized formulations.

4.1 The scalar elliptic problem.

4.2 The principle of virtual work.

4.3 Elastostatic problems.

4.4 Elastodynamic models.

4.5 Incompressible materials.

4.6 Chapter summary.

5 Finite element spaces.

5.1 Standard elements in two dimensions.

5.2 Standard polynomial spaces.

5.3 Shape functions.

5.4 Mapping functions in two dimensions.

5.5 Elements in three dimensions.

5.6 Integration and differentiation.

5.7 Stiffness matrices and load vectors.

5.8 Chapter summary.

6 Regularity and rates of convergence.

6.1 Regularity.

6.2 Classification.

6.3 The neighborhood of singular points.

6.4 Rates of convergence.

6.5 Chapter summary.

7 Computation and verification of data.

7.1 Computation of the solution and its first derivatives.

7.2 Nodal forces.

7.3 Verification of computed data.

7.4 Flux and stress intensity factors.

7.5 Chapter summary.

8 What should be computed and why?

8.1 Basic assumptions.

8.2 Conceptualization: drivers of damage accumulation.

8.3 Classical models of metal fatigue.

8.4 Linear elastic fracture mechanics.

8.5 On the existence of a critical distance.

8.6 Driving forces for damage accumulation.

8.7 Cycle counting.

8.8 Validation.

8.9 Chapter summary.

9 Beams, plates and shells.

9.1 Beams.

9.2 Plates.

9.3 Shells.

9.4 The Oak Ridge experiments.

9.5 Chapter summary.

10 Nonlinear models.

10.1 Heat conduction.

10.2 Solid mechanics.

10.3 Chapter summary.

A Definitions.

A.1 Norms and seminorms.

A.2 Normed linear spaces.

A.3 Linear functionals.

A.4 Bilinear forms.

A.5 Convergence.

A.6 Legendre polynomials.

A.7 Analytic functions.

A.8 The Schwarz inequality for integrals.

B Numerical quadrature.

B.1 Gaussian quadrature.

B.2 Gauss-Lobatto quadrature.

C Properties of the stress tensor.

C.1 The traction vector.

C.2 Principal stresses.

C.3 Transformation of vectors.

C.4 Transformation of stresses.

D Computation of stress intensity factors.

D.1 The contour integral method.

D.2 The energy release rate.

E Saint-Venant's principle.

E.1 Green's function for the Laplace equation.

E.2 Model problem.

F Solutions for selected exercises.

Bibliography.

Index.

最近チェックした商品