RとSPSSによる心理学の統計的手法<br>Statistics in Psychology Using R and SPSS

個数:
電子版価格
¥13,580
  • 電子版あり

RとSPSSによる心理学の統計的手法
Statistics in Psychology Using R and SPSS

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 552 p.
  • 言語 ENG
  • 商品コード 9780470971246
  • DDC分類 150.727

Full Description

Statistics in Psychology covers all statistical methods needed in education and research in psychology. This book looks at research questions when planning data sampling, that is to design the intended study and to calculate the sample sizes in advance. In other words, no analysis applies if the minimum size is not determined in order to fulfil certain precision requirements. The book looks at the process of empirical research into the following seven stages:



Formulation of the problem
Stipulation of the precision requirements
Selecting the statistical model for the planning and analysis
The (optimal) design of the experiment or survey
Performing the experiment or the survey
Statistical analysis of the observed results
Interpretation of the results.

Contents

Introduction. 1 Concept of the Book.

2 Measuring in Psychology.

2.1 Types of psychological measurements.

2.2 Measurement techniques in psychological assessment.

2.3 Quality criteria in psychometrics.

2.4 Additional psychological measurement techniques.

2.5 Statistical models of measurement with psychological roots.

3 Psychology: An Empirical Science.

3.1 Gain of insight in psychology.

3.2 Steps of empirical research.

4 Definition: Character, Chance, Experiment, and Survey.

4.1 Nominal scale.

4.2 Ordinal scale.

4.3 Interval scale.

4.4 Ratio scale.

4.5 Characters and factors.

II Descriptive Statistics.

5 Numerical and graphical Data Analysis.

5.1 Introduction to data analysis.

5.2 Frequencies and empirical distributions.

5.3 Statistics.

5.4 Frequency distribution for several characters.

III Inferential Statistics for one Character.

6 Probability and  distribution.

6.1 Relative frequencies and probabilities.

6.2 Random variable and theoretical distributions.

6.3 Quantiles of theoretical distribution functions.

6.4 Mean and variance of theoretical distributions.

6.5 Estimation of unknown parameters.

7 Assumptions: Random Sampling and Randomization.

7.1 Simple random sampling in surveys.

7.2 Principles of random sampling and randomization.

8 One Sample from one Population.

8.1 Introduction.

8.2 The Parameter mof acharacter modeled by a normally distributed random variable.

8.3 Planning a study for hypothesis testing with respect to m.

8.4 Sequential tests for the unknown parameter m.

8.5 Estimation, hypothesis testing, planning the study, and sequential testing concerning other parameters.

9 Two Samples from two Populations.

9.1 Hypothesis testing, study planning and sequential testing regarding the unknown parameters m1 and m2.

9.2 Hypothesis testing, study planning and sequential testing for other parameters.

9.3 Equivalence testing.

10 Samples from more than two Populations.

10.1 The various problem situations.

10.2. Selection procedures.

10.3 Multiple comparisons of means.

10.4 Analysis of variance.

IV Descriptive and Inferential Statistics for two Characters.

11 Regression and Correlation.

11.1 Introduction.

11.2 Regression model.

11.3 Correlation coefficients and measures of association.

11.4 Hypothesis testing and planning the study concerning correlation coefficients.

11.5 Correlation analysis in two samples.

V Inferential Statistics for more than two Characters.

12 One Sample from one Population.

12.1 Association between three or more characters.

12.2 Hypothesis testing concerning a vector of means m.

12.3 Comparisons of means and "homological" methods for matched observations.

13 Samples from more than one Population.

13.1 General linear model.

13.2 Analysis of covariance.

13.3. Multivariate analysis of variance.

13.4 Discriminant analysis.

VI Model Generation and Theory-Generating Procedures.

14 Model Generation.

14.1 Theoretical basics of model generation.

14.2 Methods for determining the quality and excellence of a model.

14.2.1 Goodness of fit tests.

14.2.2 Coefficients of the goodness of fit.

14.2.3 Cross-validation.

14.4 Simulation: Non-analytical solutions to statistical problems.

15 Theory-Generating Procedures.

15.1 Descriptive statistics' methods.

15.2 Methods of inferential statistics.

最近チェックした商品