Chemical Looping Systems for Fossil Energy Conversions (HAR/CDR)

個数:
電子版価格 ¥11,431
  • 電書あり
  • ポイントキャンペーン

Chemical Looping Systems for Fossil Energy Conversions (HAR/CDR)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Hardcover:ハードカバー版/ページ数 420 p.
  • 言語 ENG
  • 商品コード 9780470872529
  • DDC分類 621.4023

Full Description


This book presents the current carbonaceous fuel conversion technologies based on chemical looping concepts in the context of traditional or conventional technologies. The key features of the chemical looping processes, their ability to generate a sequestration-ready CO2 stream, are thoroughly discussed. Chapter 2 is devoted entirely to the performance of particles in chemical looping technology and covers the subjects of solid particle design, synthesis, properties, and reactive characteristics. The looping processes can be applied for combustion and/or gasification of carbon-based material such as coal, natural gas, petroleum coke, and biomass directly or indirectly for steam, syngas, hydrogen, chemicals, electricity, and liquid fuels production. Details of the energy conversion efficiency and the economics of these looping processes for combustion and gasification applications in contrast to those of the conventional processes are given in Chapters 3, 4, and 5.Finally, Chapter 6 presents additional chemical looping applications that are potentially beneficial, including those for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cell, steam-methane reforming, tar sand digestion, and chemicals and liquid fuel production.A CD is appended to this book that contains the chemical looping simulation files and the simulation results based on the ASPEN Plus software for such reactors as gasifier, reducer, oxidizer and combustor, and for such processes as conventional gasification processes, Syngas Chemical Looping Process, Calcium Looping Process, and Carbonation-Calcination Reaction (CCR) Process. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

Table of Contents

Preface                                            xi
1 Introduction 1 (56)
1.1 Background 1 (7)
1.1.1 Renewable Energy 2 (2)
1.1.2 Fossil Energy Outlook 4 (4)
1.2 Coal Combustion 8 (4)
1.2.1 Energy Conversion Efficiency 9 (2)
Improvement
1.2.2 Flue Gas Pollutant Control Methods 11 (1)
1.3 CO2 Capture 12 (3)
1.4 CO2 Sequestration 15 (3)
1.5 Coal Gasification 18 (6)
1.6 Chemical Looping Concepts 24 (11)
1.7 Chemical Looping Processes 35 (12)
1.8 Overview of This Book 47 (10)
References 48 (9)
2 Chemical Looping Particles 57 (86)
2.1 Introduction 57 (1)
2.2 Type I Chemical Looping System 58 (54)
2.2.1 General Particle Characteristics 58 (10)
2.2.2 Thermodynamics and Phase 68 (8)
Equilibrium of Metals and Metal Oxides
2.2.3 Particle Regeneration with Steam 76 (1)
2.2.4 Reaction with Oxygen and Heat of 77 (1)
Reaction
2.2.5 Particle Design Considering Heat 78 (1)
of Reaction
2.2.6 Particle Preparation and 79 (10)
Recyclability
2.2.7 Particle Formulation and Effect 89 (8)
of Support
2.2.8 Effect of Particle Size and 97 (2)
Mechanical Strength
2.2.9 Carbon and Sulfur Formation 99 (7)
Resistance
2.2.10 Particle Reaction Mechanism 106(1)
2.2.11 Effect of Reactor Design and 107(3)
Gas-Solid Contact Modes
2.2.12 Selection of Primary Metal for 110(2)
Chemical Looping Combustion of Coal
2.3 Type II Chemical Looping System 112(22)
2.3.1 Types of Metal Oxide 112(4)
2.3.2 Thermodynamics and Phase 116(3)
Equilibrium of Metal Oxide and Metal
Carbonate
2.3.3 Reaction Characteristics of 119(3)
Ca-Based Sorbents for CO2 Capture
2.3.4 Synthesis of the High-Reactivity 122(2)
PCC-CaO Sorbent
2.3.5 Reactivity of Calcium Sorbents 124(2)
2.3.6 Recyclability of Calcium Oxides 126(8)
2.4 Concluding Remarks 134(9)
References 135(8)
3 Chemical Looping Combustion 143(72)
3.1 Introduction 143(1)
3.2 CO2 Capture Strategies for Fossil 144(9)
Fuel Combustion Power Plants
3.2.1 Pulverized Coal Combustion Power 144(2)
Plants
3.2.2 CO2 Capture Strategies 146(7)
3.3 Chemical Looping Combustion 153(54)
3.3.1 Particle Reactive Properties and 156(5)
Their Relationship with CLC Operation
3.3.2 Key Design and Operational 161(6)
Parameters for a CFB-Based CLC System
3.3.3 CLC Reactor System Design 167(12)
3.3.4 Gaseous Fuel CLC Systems and 179(19)
Operational Results
3.3.5 Solid Fuel CLC Systems and 198(9)
Operational Results
3.4 Concluding Remarks 207(8)
References 208(7)
4 Chemical Looping Gasification Using 215(86)
Gaseous Fuels
4.1 Introduction 215(1)
4.2 Traditional Coal Gasification 216(14)
Processes
4.2.1 Electricity 216(7)
Production---Integrated Gasification
Combined Cycle (IGCC)
4.2.2 H2 Production 223(4)
4.2.3 Liquid Fuel Production 227(3)
4.3 Iron-Based Chemical Looping Processes 230(11)
Using Gaseous Fuels
4.3.1 Lane Process and Messerschmitt 231(3)
Process
4.3.2 U.S. Bureau of Mines Pressurized 234(2)
Fluidized Bed Steam-Iron Process
4.3.3 Institute of Gas Technology 236(1)
Process
4.3.4 Syngas Chemical Looping (SCL) 237(4)
Process
4.4 Design, Analysis and Optimization of 241(25)
the Syngas Chemical Looping (SCL) Process
4.4.1 Thermodynamic Analyses of SCL 241(10)
Reactor Behavior
4.4.2 ASPEN PLUS Simulation of SCL 251(8)
Reactor Systems
4.4.3 Syngas Chemical Looping (SCL) 259(7)
Process Testing
4.5 Process Simulation of the Traditional 266(6)
Gasification Process and the Syngas
Chemical Looping Process
4.5.1 Common Assumptions and Model Setup 266(1)
4.5.2 Description of Various Systems 267(3)
4.5.3 ASPEN PLUS Simulation, Results, 270(2)
and Analyses
4.6 Example of SCL Applications---A 272(3)
Coal-to-Liquid Configuration
4.6.1 Process Overview 272(1)
4.6.2 Mass/Energy Balance and Process 273(2)
Evaluation
4.7 Calcium Looping Process Using Gaseous 275(20)
Fuels
4.7.1 Description of the Processes 277(1)
4.7.2 Reaction Characteristics of the 278(10)
Processes
4.7.3 Analyses of the Processes 288(6)
4.7.4 Enhanced Coal-to-Liquid (CTL) 294(1)
Process with Sulfur and CO2 Capture
4.8 Concluding Remarks 295(6)
References 296(5)
5 Chemical Looping Gasification Using Solid 301(62)
Fuels
5.1 Introduction 301(1)
5.2 Chemical Looping Gasification 302(26)
Processes Using Calcium-Based Sorbent
5.2.1 CO2 Acceptor Process 303(5)
5.2.2 HyPr-Ring Process 308(4)
5.2.3 Zero Emission Coal Alliance 312(2)
Process
5.2.4 ALSTOM Hybrid 314(6)
Combustion-Gasification Process
5.2.5 Fuel-Flexible Advanced 320(7)
Gasification-Combustion Process
5.2.6 General Comments 327(1)
5.3 Coal-Direct Chemical Looping (CDCL) 328(5)
Processes Using Iron-Based Oxygen Carriers
5.3.1 Coal-Direct Chemical Looping 329(2)
Process---Configuration I
5.3.2 Coal-Direct Chemical Looping 331(2)
Process---Configuration II
5.3.3 Comments on the Iron-Based 333(1)
Coal-Direct Chemical Looping Process
5.4 Challenges to the Coal-Direct 333(20)
Chemical Looping Processes and Strategy
for Improvements
5.4.1 Oxygen-Carrier Particle 334(2)
Reactivity and Char Reaction Enhancement
5.4.2 Configurations and Conversions of 336(10)
the Reducer
5.4.3 Performance of the Oxidizer and 346(3)
the Combustor
5.4.4 Fate of Pollutants and Ash 349(2)
5.4.5 Energy Management, Heat 351(2)
Integration, and General Comments
5.5 Process Simulation on the Coal-Direct 353(4)
Chemical Looping Process
5.5.1 ASPEN Model Setup 353(2)
5.5.2 Simulation Results 355(2)
5.6 Concluding Remarks 357(6)
References 358(5)
6 Novel Applications of Chemical Looping 363(40)
Technologies
6.1 Introduction 363(1)
6.2 Hydrogen Storage and Onboard Hydrogen 364(14)
Production
6.2.1 Compressed Hydrogen Gas and 364(2)
Liquefied Hydrogen
6.2.2 Metal Hydrides 366(2)
6.2.3 Bridged Metal-Organic Frameworks 368(1)
6.2.4 Carbon Nanotubes and Graphite 369(1)
Nanofibers
6.2.5 Onboard Hydrogen Production via 370(8)
Iron Based Materials
6.3 Carbonation-Calcination Reaction 378(7)
(CCR) Process for Carbon Dioxide Capture
6.4 Chemical Looping Gasification 385(3)
Integrated with Fuel Cells
6.4.1 Chemical Looping Gasification 385(1)
Integrated with Solid-Oxide Fuel Cells
6.4.2 Direct Solid Fuel Cells 386(2)
6.5 Enhanced Steam Methane Reforming 388(2)
6.6 Tar Sand Digestion via Steam 390(1)
Generation
6.7 Liquid Fuel Production from Chemical 391(2)
Looping Gasification
6.8 Chemical Looping with Oxygen 393(3)
Uncoupling (CLOU)
6.9 Concluding Remarks 396(7)
References 397(6)
Subject Index 403(8)
Author Index 411