意思決定のためのデータマイニングと統計学<br>Data Mining and Statistics for Decision Making (Wiley Series in Computational Statistics)

個数:
電子版価格
¥14,307
  • 電子版あり

意思決定のためのデータマイニングと統計学
Data Mining and Statistics for Decision Making (Wiley Series in Computational Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 689 p.
  • 言語 ENG
  • 商品コード 9780470688298
  • DDC分類 006.312

Full Description

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives.

This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations.

 Key Features:



Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques.
Starts from basic principles up to advanced concepts.
Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software.
Gives practical tips for data mining implementation to solve real world problems.
Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring.
Supported by an accompanying website hosting datasets and user analysis.

Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

Contents

Preface. Foreword.

Foreword from the French language edition.

List of trademarks.

1. Oveview of data mining.

1.1 What is data mining?

1.2 What is data mining used for?

1.3 Data mining and statistics.

1.4 Data mining and information technology.

1.5 Data mining and protection of persona; data.

1.6 Implementation of data mining.

2. The development of a data mining study.

2.1 Defining the aims.

2.2 Listing the existing data.

2.3 Collecting the data.

2.4 Exploring and preparing the data.

2.5 Population segmentation.

2.6 Drawing up and validating predictive models.

2.7 Synthesizing predictive models of different segments.

2.8 Iteration of the preceding steps.

2.9 Deploying the models.

2.10 Training the model users.

2.11 Monitoring the models.

2.12 Enriching the models.

2.13 Remarks.

2.14 Life cycle of a model.

2.15 Costs of a pilot project.

3. Data Exploration and preparation.

3.1 The different types of data.

3.2 Examining the distribution of variables.

3.3 Detection of rare or missing values.

3.4 Detection of aberrant values.

3.5 Detection of extreme values.

3.6 Tests of normality.

3.7 Homoscedasticity and heteroscedasticity.

3.8 Detection of the most discriminating variables.

3.9 Transformation of variables.

3.10 Choosing ranges of values of binned variables.

3.11 Creating new variables.

3.12 Detecting interactions.

3.13 Automatic variable selection.

3.14 Detection of collinearity.

3.15 Sampling.

4. Using commercial data.

4.1 Data used in commercial applications.

4.2 Special data.

4.3 Data used by business sector.

5. Statistical and data mining software.

5.1 Types of data mining and statistical software.

5.2 Essential characteristics of the software.

5.3 The main software packages.

5.4 Comparison of R, SAS and IBM SPSS.

5.5 How to reduce processing time.

6. An outline of data mining methods.

6.1 Classification of the methods.

6.2 Comparison of the methods.

7. Factor analysis.

7.1 Principal component analysis.

7.2 Variants of principal component analysis.

7.3 Correspondence analysis.

7.4 Multiple correspondence analysis.

8. Neural networks.

8.1 General information on neural networks.

8.2 Structure of a neural network.

8.3 Choosing the learning sample.

8.4 Some empirical rules for network design.

8.5 Data normalization.

8.6 Learning algorithms.

8.7 The main neural networks.

9. Cluster analysis.

9.1 Definition of clustering.

9.2 Applications of clustering.

9.3 Complexity of clustering.

9.4 Clustering structures.

9.5 Some methodological considerations.

9.6 Comparison of factor analysis and clustering.

9.7 Within-cluster and between-cluster sum of squares.

9.8 Measurements of clustering quality.

9.9 Partitioning methods.

9.10 Agglomerative hierarchical clustering.

9.11 Hybrid clustering methods.

9.12 Neural clustering.

9.13 Clustering by similarity aggregation.

9.14 Clustering of numeric variables.

9.15 Overview of clustering methods.

10. Association analysis.

10.1 Principles.

10.2 Using taxonomy.

10.3 Using supplementary variables.

10.4 Applications.

10.5 Example of use.

11. Classification and prediction methods.

11.1 Introduction.

11.2 Inductive and transductive methods.

11.3 Overview of classification and prediction methods.

11.4 Classification by decision tree.

11.5 Prediction by decision tree.

11.6 Classification by discriminant analysis.

11.7 Prediction by linear regression.

11.8 Classification by logistic regression.

11.9 Developments in logistic regression.

11.10 Bayesian methods.

11.11 Classification and prediction by neural networks.

11.12 Classification by support vector machines.

11.13 Prediction by genetic algorithms.

11.14 Improving the performance of a predictive model.

11.15 Bootstrapping and ensemble methods.

11.16 Using classification and prediction methods.

12. An application of data mining: scoring.

12.1 The different types of score.

12.2 Using propensity scores and risk scores.

12.3 Methodology.

12.4 Implementing a strategic score.

12.5 Implementing an operational score.

12.6 Scoring solutions used in a business.

12.7 An example of credit scoring (data preparation).

12.8 An example of credit scoring (modeling by logistic regression).

12.9 An example of credit scoring (modeling by DISQUAL discriminant analysis).

12.10 A brief history of credit scoring.

13. Factors for success in a data mining project.

13.1 The subject.

13.2 The people.

13.3 The data.

13.4 The IT systems.

13.5 The business culture.

13.6 Data mining: eight common misconceptions.

13.7 Return on investment.

14. Text mining.

14.1 Definition of text mining.

14.2 Text sources used.

14.3 Using text mining.

14.4 Information retrieval.

14.5 Information extraction.

14.6 Multi-type data mining.

15. Web mining.

15.1 The aims of web mining.

15.2 Global analyses.

15.3 Individual analyses.

15.4 Personal analysis.

Appendix A. Elements of statistics.

Appendix B. Further reading.

Index. 

最近チェックした商品