物質移動論の基礎(第7版)<br>Heat Mass Transfer (ISV) (7TH)

個数:

物質移動論の基礎(第7版)
Heat Mass Transfer (ISV) (7TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 1048 p.
  • 言語 ENG
  • 商品コード 9780470646151

Full Description


Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they ll gain an appreciation for the richness and beauty of the discipline.

Contents

Symbols xxiCHAPTER 1 Introduction 11.1 What and How? 21.2 Physical Origins and Rate Equations 31.2.1 Conduction 31.2.2 Convection 61.2.3 Radiation 81.2.4 The Thermal Resistance Concept 121.3 Relationship to Thermodynamics 121.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy) 131.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines 311.4 Units and Dimensions 361.5 Analysis of Heat Transfer Problems: Methodology 381.6 Relevance of Heat Transfer 411.7 Summary 45References 48Problems 49CHAPTER 2 Introduction to Conduction 672.1 The Conduction Rate Equation 682.2 The Thermal Properties of Matter 702.2.1 Thermal Conductivity 702.2.2 Other Relevant Properties 782.3 The Heat Diffusion Equation 822.4 Boundary and Initial Conditions 902.5 Summary 94References 95Problems 95CHAPTER 3 One-Dimensional, Steady-State Conduction 1113.1 The Plane Wall 1123.1.1 Temperature Distribution 1123.1.2 Thermal Resistance 1143.1.3 The Composite Wall 1153.1.4 Contact Resistance 1173.1.5 Porous Media 1193.2 An Alternative Conduction Analysis 1323.3 Radial Systems 1363.3.1 The Cylinder 1363.3.2 The Sphere 1413.4 Summary of One-Dimensional Conduction Results 1423.5 Conduction with Thermal Energy Generation 1423.5.1 The Plane Wall 1433.5.2 Radial Systems 1493.5.3 Tabulated Solutions 1503.5.4 Application of Resistance Concepts 1503.6 Heat Transfer from Extended Surfaces 1543.6.1 A General Conduction Analysis 1563.6.2 Fins of Uniform Cross-Sectional Area 1583.6.3 Fin Performance 1643.6.4 Fins of Nonuniform Cross-Sectional Area 1673.6.5 Overall Surface Efficiency 1703.7 The Bioheat Equation 1783.8 Thermoelectric Power Generation 1823.9 Micro- and Nanoscale Conduction 1893.9.1 Conduction Through Thin Gas Layers 1893.9.2 Conduction Through Thin Solid Films 1903.10 Summary 190References 193Problems 193CHAPTER 4 Two-Dimensional, Steady-State Conduction 2294.1 Alternative Approaches 2304.2 The Method of Separation of Variables 2314.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 2354.4 Finite-Difference Equations 2414.4.1 The Nodal Network 2414.4.2 Finite-Difference Form of the Heat Equation 2424.4.3 The Energy Balance Method 2434.5 Solving the Finite-Difference Equations 2504.5.1 Formulation as a Matrix Equation 2504.5.2 Verifying the Accuracy of the Solution 2514.6 Summary 256References 257Problems 2574S.1 The Graphical Method W-14S.1.1 Methodology of Constructing a Flux Plot W-14S.1.2 Determination of the Heat Transfer Rate W-24S.1.3 The Conduction Shape Factor W-34S.2 The Gauss Seidel Method: Example of Usage W-5References W-9Problems W-10CHAPTER 5 Transient Conduction 2795.1 The Lumped Capacitance Method 2805.2 Validity of the Lumped Capacitance Method 2835.3 General Lumped Capacitance Analysis 2875.3.1 Radiation Only 2885.3.2 Negligible Radiation 2885.3.3 Convection Only with Variable Convection Coefficient 2895.3.4 Additional Considerations 2895.4 Spatial Effects 2985.5 The Plane Wall with Convection 2995.5.1 Exact Solution 3005.5.2 Approximate Solution 3005.5.3 Total Energy Transfer 3025.5.4 Additional Considerations 3025.6 Radial Systems with Convection 3035.6.1 Exact Solutions 3035.6.2 Approximate Solutions 3045.6.3 Total Energy Transfer 3045.6.4 Additional Considerations 3055.7 The Semi-Infinite Solid 3105.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 3175.8.1 Constant Temperature Boundary Conditions 3175.8.2 Constant Heat Flux Boundary Conditions 3195.8.3 Approximate Solutions 3205.9 Periodic Heating 3275.10 Finite-Difference Methods 3305.10.1 Discretization of the Heat Equation: The Explicit Method 3305.10.2 Discretization of the Heat Equation: The Implicit Method 3375.11 Summary 345References 346Problems 3465S.1 Graphical Representation of One-Dimensional, Transient Conduction in thePlane Wall, Long Cylinder, and Sphere W-125S.2 Analytical Solutions of Multidimensional Effects W-16References W-22Problems W-22CHAPTER 6 Introduction to Convection 3776.1 The Convection Boundary Layers 3786.1.1 The Velocity Boundary Layer 3786.1.2 The Thermal Boundary Layer 3796.1.3 The Concentration Boundary Layer 3806.1.4 Significance of the Boundary Layers 3826.2 Local and Average Convection Coefficients 3826.2.1 Heat Transfer 3826.2.2 Mass Transfer 3836.2.3 The Problem of Convection 3856.3 Laminar and Turbulent Flow 3896.3.1 Laminar and Turbulent Velocity Boundary Layers 3896.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 3916.4 The Boundary Layer Equations 3946.4.1 Boundary Layer Equations for Laminar Flow 3946.4.2 Compressible Flow 3976.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 3986.5.1 Boundary Layer Similarity Parameters 3986.5.2 Functional Form of the Solutions 4006.6 Physical Interpretation of the Dimensionless Parameters 4076.7 Boundary Layer Analogies 4096.7.1 The Heat and Mass Transfer Analogy 4106.7.2 Evaporative Cooling 4136.7.3 The Reynolds Analogy 4166.8 Summary 417References 418Problems 4196S.1 Derivation of the Convection Transfer Equations W-256S.1.1 Conservation of Mass W-256S.1.2 Newton s Second Law of Motion W-266S.1.3 Conservation of Energy W-296S.1.4 Conservation of Species W-32References W-36Problems W-36CHAPTER 7 External Flow 4337.1 The Empirical Method 4357.2 The Flat Plate in Parallel Flow 4367.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 4377.2.2 Turbulent Flow over an Isothermal Plate 4437.2.3 Mixed Boundary Layer Conditions 4447.2.4 Unheated Starting Length 4457.2.5 Flat Plates with Constant Heat Flux Conditions 4467.2.6 Limitations on Use of Convection Coefficients 4467.3 Methodology for a Convection Calculation 4477.4 The Cylinder in Cross Flow 4557.4.1 Flow Considerations 4557.4.2 Convection Heat and Mass Transfer 4577.5 The Sphere 4657.6 Flow Across Banks of Tubes 4687.7 Impinging Jets 4777.7.1 Hydrodynamic and Geometric Considerations 4777.7.2 Convection Heat and Mass Transfer 4787.8 Packed Beds 4827.9 Summary 483References 486Problems 486CHAPTER 8 Internal Flow 5178.1 Hydrodynamic Considerations 5188.1.1 Flow Conditions 5188.1.2 The Mean Velocity 5198.1.3 Velocity Profile in the Fully Developed Region 5208.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 5228.2 Thermal Considerations 5238.2.1 The Mean Temperature 5248.2.2 Newton s Law of Cooling 5258.2.3 Fully Developed Conditions 5258.3 The Energy Balance 5298.3.1 General Considerations 5298.3.2 Constant Surface Heat Flux 5308.3.3 Constant Surface Temperature 5338.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 5378.4.1 The Fully Developed Region 5378.4.2 The Entry Region 5428.4.3 Temperature-Dependent Properties 5448.5 Convection Correlations: Turbulent Flow in Circular Tubes 5448.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 5528.7 Heat Transfer Enhancement 5558.8 Flow in Small Channels 5588.8.1 Microscale Convection in Gases 5588.8.2 Microscale Convection in Liquids 5598.8.3 Nanoscale Convection 5608.9 Convection Mass Transfer 5638.10 Summary 565References 568Problems 569CHAPTER 9 Free Convection 5939.1 Physical Considerations 5949.2 The Governing Equations for Laminar Boundary Layers 5979.3 Similarity Considerations 5989.4 Laminar Free Convection on a Vertical Surface 5999.5 The Effects of Turbulence 6029.6 Empirical Correlations: External Free Convection Flows 6049.6.1 The Vertical Plate 6059.6.2 Inclined and Horizontal Plates 6089.6.3 The Long Horizontal Cylinder 6139.6.4 Spheres 6179.7 Free Convection Within Parallel Plate Channels 6189.7.1 Vertical Channels 6199.7.2 Inclined Channels 6219.8 Empirical Correlations: Enclosures 6219.8.1 Rectangular Cavities 6219.8.2 Concentric Cylinders 6249.8.3 Concentric Spheres 6259.9 Combined Free and Forced Convection 6279.10 Convection Mass Transfer 6289.11 Summary 629References 630Problems 631CHAPTER 10 Boiling and Condensation 65310.1 Dimensionless Parameters in Boiling and Condensation 65410.2 Boiling Modes 65510.3 Pool Boiling 65610.3.1 The Boiling Curve 65610.3.2 Modes of Pool Boiling 65710.4 Pool Boiling Correlations 66010.4.1 Nucleate Pool Boiling 66010.4.2 Critical Heat Flux for Nucleate Pool Boiling 66210.4.3 Minimum Heat Flux 66310.4.4 Film Pool Boiling 66310.4.5 Parametric Effects on Pool Boiling 66410.5 Forced Convection Boiling 66910.5.1 External Forced Convection Boiling 67010.5.2 Two-Phase Flow 67010.5.3 Two-Phase Flow in Microchannels 67310.6 Condensation: Physical Mechanisms 67310.7 Laminar Film Condensation on a Vertical Plate 67510.8 Turbulent Film Condensation 67910.9 Film Condensation on Radial Systems 68410.10 Condensation in Horizontal Tubes 68910.11 Dropwise Condensation 69010.12 Summary 691References 691Problems 693CHAPTER 11 Heat Exchangers 70511.1 Heat Exchanger Types 70611.2 The Overall Heat Transfer Coefficient 70811.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 71111.3.1 The Parallel-Flow Heat Exchanger 71211.3.2 The Counterflow Heat Exchanger 71411.3.3 Special Operating Conditions 71511.4 Heat Exchanger Analysis: The Effectiveness NTU Method 72211.4.1 Definitions 72211.4.2 Effectiveness NTU Relations 72311.5 Heat Exchanger Design and Performance Calculations 73011.6 Additional Considerations 73911.7 Summary 747References 748Problems 74811S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers W-4011S.2 Compact Heat Exchangers W-44References W-49Problems W-50CHAPTER 12 Radiation: Processes and Properties 76712.1 Fundamental Concepts 76812.2 Radiation Heat Fluxes 77112.3 Radiation Intensity 77312.3.1 Mathematical Definitions 77312.3.2 Radiation Intensity and Its Relation to Emission 77412.3.3 Relation to Irradiation 77912.3.4 Relation to Radiosity for an Opaque Surface 78112.3.5 Relation to the Net Radiative Flux for an Opaque Surface 78212.4 Blackbody Radiation 78212.4.1 The Planck Distribution 78312.4.2 Wien s Displacement Law 78412.4.3 The Stefan Boltzmann Law 78412.4.4 Band Emission 78512.5 Emission from Real Surfaces 79212.6 Absorption, Reflection, and Transmission by Real Surfaces 80112.6.1 Absorptivity 80212.6.2 Reflectivity 80312.6.3 Transmissivity 80512.6.4 Special Considerations 80512.7 Kirchhoff s Law 81012.8 The Gray Surface 81212.9 Environmental Radiation 81812.9.1 Solar Radiation 81912.9.2 The Atmospheric Radiation Balance 82112.9.3 Terrestrial Solar Irradiation 82312.10 Summary 826References 830Problems 830CHAPTER 13 Radiation Exchange Between Surfaces 86113.1 The View Factor 86213.1.1 The View Factor Integral 86213.1.2 View Factor Relations 86313.2 Blackbody Radiation Exchange 87213.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 87613.3.1 Net Radiation Exchange at a Surface 87713.3.2 Radiation Exchange Between Surfaces 87813.3.3 The Two-Surface Enclosure 88413.3.4 Radiation Shields 88613.3.5 The Reradiating Surface 88813.4 Multimode Heat Transfer 89313.5 Implications of the Simplifying Assumptions 89613.6 Radiation Exchange with Participating Media 89613.6.1 Volumetric Absorption 89613.6.2 Gaseous Emission and Absorption 89713.7 Summary 901References 902Problems 903CHAPTER 14 Diffusion Mass Transfer 93314.1 Physical Origins and Rate Equations 93414.1.1 Physical Origins 93414.1.2 Mixture Composition 93514.1.3 Fick s Law of Diffusion 93614.1.4 Mass Diffusivity 93714.2 Mass Transfer in Nonstationary Media 93914.2.1 Absolute and Diffusive Species Fluxes 93914.2.2 Evaporation in a Column 94214.3 The Stationary Medium Approximation 94714.4 Conservation of Species for a Stationary Medium 94714.4.1 Conservation of Species for a Control Volume 94814.4.2 The Mass Diffusion Equation 94814.4.3 Stationary Media with Specified Surface Concentrations 95014.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 95414.5.1 Evaporation and Sublimation 95514.5.2 Solubility of Gases in Liquids and Solids 95514.5.3 Catalytic Surface Reactions 96014.6 Mass Diffusion with Homogeneous Chemical Reactions 96214.7 Transient Diffusion 96514.8 Summary 971References 972Problems 972APPENDIX A Thermophysical Properties of Matter 981APPENDIX B Mathematical Relations and Functions 1013APPENDIX C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 1019APPENDIX D The Gauss Seidel Method 1025APPENDIX E The Convection Transfer Equations 1027E.1 Conservation of Mass 1028E.2 Newton s Second Law of Motion 1028E.3 Conservation of Energy 1029E.4 Conservation of Species 1030APPENDIX F Boundary Layer Equations for Turbulent Flow 1031APPENDIX G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 1035Index 1039

最近チェックした商品