応用統計学(第3版)<br>Applied Statistics : Analysis of Variance and Regression (Wiley Series in Probability and Statistics) (3RD)

個数:

応用統計学(第3版)
Applied Statistics : Analysis of Variance and Regression (Wiley Series in Probability and Statistics) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9780470571255
  • DDC分類 570

基本説明

New in paperback. Hardcover was published in 2004. Provides relevant, up-to-date coverage of analysis of variants and regression for professionals in public healh and other biomedical fields. Includes both graded and challenging exercises and liberal computer discussions now supplemented with SAS and SPSS.

Full Description

This work has been thoughtfully designed so that it serves equally well as a reference for the practitioner and as a self-contained textbook for the advanced student.
* Rewritten to maintain clarity and brevity while expanding the coverage of previous editions.
* Changes to design-related topics include increased discussion of mixed models and random effects, greater emphasis on regression and data screening, and more use of graphs throughout.
* Includes both graded and challenging exercises.
* Liberal computer discussions now supplemented with SAS and SPSS.

Contents

Preface. 1. Data Screening.

1.1 Variables and Their Classification.

1.2 Describing the Data.

1.3 Departures from Assumptions.

1.4 Summary.

2. One-Way Analysis of Variance Design.

2.1 One-Way Analysis of Variance with Fixed Effects.

2.2 One-Way Analysis of Variance with Random Effects.

2.3 Designing an Observational Study or Experiment.

2.4 Checking if the Data Fit the One-Way ANOVA Model.

2.5 What to Do if the Data Do Not Fit the Model.

2.6 Presentation and Interpretation of Results.

2.7 Summary.

3. Estimation and Simultaneous Inference.

3.1 Estimation for Single Population Means.

3.2 Estimation for Linear Combinations of Population Means.

3.3 Simultaneous Statistical Inference.

3.4 Inference for Variance Components.

3.5 Presentation and Interpretation of Results.

3.6 Summary.

4. Hierarchical or Nested Design.

4.1 Example.

4.2 The Model.

4.3 Analysis of Variance Table and F Tests.

4.4 Estimation of Parameters.

4.5 Inferences with Unequal Sample Sizes.

4.6 Checking If the Data Fit the Model.

4.7 What to Do If the Data Don't Fit the Model.

4.8 Designing a Study.

4.9 Summary.

5. Two Crossed Factors: Fixed Effects and Equal Sample Sizes.

5.1 Example.

5.2 The Model.

5.3 Interpretation of Models and Interaction.

5.4 Analysis of Variance and F Tests.

5.5 Estimates of Parameters and Confidence Intervals.

5.6 Designing a Study.

5.7 Presentation and Interpretation of Results.

5.8 Summary.

6 Randomized Complete Block Design.

6.1 Example.

6.2 The Randomized Complete Block Design.

6.3 The Model.

6.4 Analysis of Variance Table and F Tests.

6.5 Estimation of Parameters and Confidence Intervals.

6.6 Checking If the Data Fit the Model.

6.7 What to Do if the Data Don't Fit the Model.

6.8 Designing a Randomized Complete Block Study.

6.9 Model Extensions.

6.10 Summary.

7. Two Crossed Factors: Fixed Effects and Unequal Sample Sizes.

7.1 Example.

7.2 The Model.

7.3 Analysis of Variance and F Tests.

7.4 Estimation of Parameters and Confidence Intervals.

7.5 Checking If the Data Fit the Two-Way Model.

7.6 What To Do If the Data Don't Fit the Model.

7.7 Summary.

8. Crossed Factors: Mixed Models.

8.1 Example.

8.2 The Mixed Model.

8.3 Estimation of Fixed Effects.

8.4 Analysis of Variance.

8.5 Estimation of Variance Components.

8.6 Hypothesis Testing.

8.7 Confidence Intervals for Means and Variance Components.

8.8 Comments on Available Software.

8.9 Extensions of the Mixed Model.

8.10 Summary.

9. Repeated Measures Designs.

9.1 Repeated Measures for a Single Population.

9.2 Repeated Measures with Several Populations.

9.3 Checking if the Data Fit the Repeated Measures Model.

9.4 What to Do if the Data Don't Fit the Model.

9.5 General Comments on Repeated Measures Analyses.

9.6 Summary.

10. Linear Regression: Fixed X Model.

10.1 Example.

10.2 Fitting a Straight Line.

10.3 The Fixed X Model.

10.4 Estimation of Model Parameters and Standard Errors.

10.5 Inferences for Model Parameters: Confidence Intervals.

10.6 Inference for Model Parameters: Hypothesis Testing.

10.7 Checking if the Data Fit the Regression Model.

10.8 What to Do if the Data Don't Fit the Model.

10.9 Practical Issues in Designing a Regression Study.

10.10 Comparison with One-Way ANOVA.

10.11 Summary.

11. Linear Regression: Random X Model and Correlation.

11.1 Example.

11.2 Summarizing the Relationship Between X and Y.

11.3 Inferences for the Regression of Y and X.

11.4 The Bivariate Normal Model.

11.5 Checking if the Data Fit the Random X Regression Model.

11.6 What to Do if the Data Don't Fit the Random X Model.

11.7 Summary.

12. Multiple Regression.

12.1 Example.

12.2 The Sample Regression Plane.

12.3 The Multiple Regression Model.

12.4 Parameters Standard Errors, and Confidence Intervals.

12.5 Hypothesis Testing.

12.6 Checking If the Data Fit the Multiple Regression Model.

12.7 What to Do If the Data Don't Fit the Model.

12.8 Summary.

13. Multiple and Partial Correlation.

13.1 Example.

13.2 The Sample Multiple Correlation Coefficient.

13.3 The Sample Partial Correlation Coefficient.

13.4 The Joint Distribution Model.

13.5 Inferences for the Multiple Correlation Coefficient.

13.6 Inferences for Partial Correlation Coefficients.

13.7 Checking If the Data Fit the Joint Normal Model.

13.8 What to Do If the Data Don't Fit the Model.

13.9 Summary.

14. Miscellaneous Topics in Regression.

14.1 Models with Dummy Variables.

14.2 Models with Interaction Terms.

14.3 Models with Polynomial Terms.

14.4 Variable Selection.

14.5 Summary.

15. Analysis of Covariance.

15.1 Example.

15.2 The ANCOVA Model.

15.3 Estimation of Model Parameters.

15.4 Hypothesis Tests.

15.5 Adjusted Means.

15.6 Checking If the Data Fit the ANCOVA Model.

15.7 What to Do if the Data Don't Fit the Model.

15.8 ANCOVA in Observational Studies.

15.9 What Makes a Good Covariate.

15.10 Measurement Error.

15.11 ANCOVA versus Other Methods of Adjustment.

15.12 Comments on Statistical Software.

15.13 Summary.

16. Summaries, Extensions, and Communication.

16.1 Summaries and Extensions of Models.

16.2 Communication of Statistics in the Context of Research Project.

Appendix A.

A.1 Expected Values and Parameters.

A.2 Linear Combinations of Variables and Their Parameters.

A.3 Balanced One-Way ANOVA, Expected Mean Squares.

A.4 Balanced One-Way ANOVA, Random Effects.

A.5 Balanced Nested Model.

A.6 Mixed Model.

A.7 Simple Linear Regression—Derivation of Least Squares Estimators.

A.8 Derivation of Variance Estimates from Simple Linear Regression.

Appendix B.

Index.

最近チェックした商品