多重比較法<br>Multiple Comparison Procedures (Wiley Series in Probability and Statistics)

個数:

多重比較法
Multiple Comparison Procedures (Wiley Series in Probability and Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9780470568330
  • DDC分類 519

基本説明

Offers an up-to-date view of multiple comparison procedures, disproving the belief held by some statisticians that such procedures have no place in data analysis. With equal emphasis on theory and applications, this book covers the multiple comparison techniques advantages and the validity of statistical inferences. With detailed descriptions of the derivation and implementation of procedures, this text examines classical approaches, confidence estimation procedures, as well as benefits and drawbacks of other methods. Including examples and tables, this resource is both practical and informative.

Full Description

Offering a balanced, up-to-date view of multiple comparison procedures, this book refutes the belief held by some statisticians that such procedures have no place in data analysis. With equal emphasis on theory and applications, it establishes the advantages of multiple comparison techniques in reducing error rates and in ensuring the validity of statistical inferences. Provides detailed descriptions of the derivation and implementation of a variety of procedures, paying particular attention to classical approaches and confidence estimation procedures. Also discusses the benefits and drawbacks of other methods. Numerous examples and tables for implementing procedures are included, making this work both practical and informative.

Contents

1. Introduction 1 1. Two Early Multiple Comparison Procedures 2 2. Basic Notions and Philosophy of Multiple Comparisons 5 3. Examples 12 Part I. Procedures Based in Classical Approaches for Fixed-Effects Linear Models with Normal Homoscedastic Independent Errors 17 2. Some Theory of Multiple Comparison Procedures for Fixed-Effects Linear Models 17 2. Single-Step Procedures for Nonhierarchical Families 28 3. Single-Step Procedures for Hierarchical Families 43 4. Step-Down Procedures 53 3. Single-Step Procedures for Pairwise and More General Comparisons among All Treatments 72 1. Scheffe s S-Procedure 73 2. Tukey s T-Procedure for Balanced Designs 80 3. Modifications of the T-Procedure for Unbalanced Designs 85 4. Comparisons among Single-Step Procedures 102 5. Additional Topics 107 4. Stepwise Procedures for Pairwise and More General Comparisons among All Treatments 110 1. Step-Down Procedures Based on F-Statistics 111 2. Step-Down Procedures Based in Studentized Range Statistics 114 3. Peritz s Closed Step-Down Procedure 121 4. Step-Up Procedures 124 5. A Comparison of Single-Step and Stepwise Procedures 128 5. Procedures for Some Nonhierarchical Finite Families of Comparisons 134 1. Orthogonal Comparisons 135 2. Comparisons with a Control 139 3. Comparisons with the Best Treatment 150 4. Two Miscellaneous Families 157 6. Designing Experiments for Multiple Comparisons 161 1. Single-Stage Procedures 163 2. Two-Stage Procedures 171 3. Incomplete Block Designs for Comparing Treatments with a Control 174 Part II. Procedures for Other Models and Problems, and Procedures Based on Alternative Approaches 179 7. Procedures for One-Way Layouts with Unequal Variances 181 1. Single-Stage Procedures 182 2. Two-Stage Procedures 194 3. Step-Down Procedures 204 8. Procedures for Mixed Two-Way Layouts and Designs with Random Covariates 207 1. Procedures for One-Way Repeated Measures and Mixed Two-Way Designs 208 2. Procedures for Analysis of Covariance Designs with Random Covariates 219 9. Distribution-Free and Robust Procedures 234 1. Procedures for One-Way Layouts 235 2. Procedures for Randomized Complete Block Designs 250 3. Procedures Based on Other Approaches 267 4. Robust Procedures 271 10. Some Miscellaneous Multiple Comparison Problems 274 1. Multiple Comparison Procedures for Categorical Data 274 2. Multiple Comparisons of Variances 282 3. Graphical Procedures 286 4. Multiple Comparisons of Means under Order Restrictions 290 5. Interactions in Two-Way Layouts 294 6. Partitioning Treatment Means into Groups 303 11. Optimal Procedures Based on Decision-Theoretic, Bayesian, and Other Approaches 310 1. A Decision-Theoretic Approach 311 2. A Neyman-Pearson Type Approach 314 3. A Bayesian Approach 318 4. A Combined Bayesian and Neyman-Pearson Type Approach 334 5. A -Minimax Approach 336 Appendixes 341 1. Some General Theory of Multiple Comparison Procedures 343 2. Some Probability Inequalities Useful in Multiple Comparisons 362 3. Some Probability Distributions and Tables Useful in Multiple Comparisons 373 References 417 Author Index 439 Subject Index 445

最近チェックした商品