行列計算の原理(第3版)<br>Fundamentals of Matrix Computations (Pure and Applied Math (Wiley)) (3RD)

個数:
  • ポイントキャンペーン

行列計算の原理(第3版)
Fundamentals of Matrix Computations (Pure and Applied Math (Wiley)) (3RD)

  • ウェブストア価格 ¥30,358(本体¥27,599)
  • John Wiley & Sons Inc(2010/06発売)
  • 外貨定価 US$ 145.95
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 1,375pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 644 p.
  • 言語 ENG
  • 商品コード 9780470528334
  • DDC分類 512.9434

基本説明

Explains how to perform matrix computations efficiently and accurately by providing a detailed introduction to the fundamental ideas of numerical linear algebra and utilizes MATLAB to perform elaborate computational experiments. 2nd ed.: 2002.

Full Description

This new, modernized edition provides a clear and thorough introduction to matrix computations,a key component of scientific computing Retaining the accessible and hands-on style of its predecessor, Fundamentals of Matrix Computations, Third Edition thoroughly details matrix computations and the accompanying theory alongside the author's useful insights. The book presents the most important algorithms of numerical linear algebra and helps readers to understand how the algorithms are developed and why they work.

Along with new and updated examples, the Third Edition features:



A novel approach to Francis' QR algorithm that explains its properties without reference to the basic QR algorithm
Application of classical Gram-Schmidt with reorthogonalization
A revised approach to the derivation of the Golub-Reinsch SVD algorithm
New coverage on solving product eigenvalue problems
Expanded treatment of the Jacobi-Davidson method
A new discussion on stopping criteria for iterative methods for solving linear equations

Throughout the book, numerous new and updated exercises—ranging from routine computations and verifications to challenging programming and proofs—are provided, allowing readers to immediately engage in applying the presented concepts. The new edition also incorporates MATLAB to solve real-world problems in electrical circuits, mass-spring systems, and simple partial differential equations, and an index of MATLAB terms assists readers with understanding the basic concepts related to the software.

Fundamentals of Matrix Computations, Third Edition is an excellent book for courses on matrix computations and applied numerical linear algebra at the upper-undergraduate and graduate level. The book is also a valuable resource for researchers and practitioners working in the fields of engineering and computer science who need to know how to solve problems involving matrix computations.

Contents

Preface. Acknowledgments.

1 Gaussian Elimination and Its Variants.

1.1 Matrix Multiplication.

1.2 Systems of Linear Equations.

1.3 Triangular Systems.

1.4 Positive Definite Systems; Cholesky Decomposition.

1.5 Banded Positive Definite Systems.

1.6 Sparse Positive Definite Systems.

1.7 Gaussian Elimination and the LU Decomposition.

1.8 Gaussain Elimination and Pivoting.

1.9 Sparse Gaussian Elimination.

2 Sensitivity of Linear Systems.

2.1 Vector and Matrix Norms.

2.2 Condition Numbers.

2.3 Perturbing the Coefficient Matrix.

2.4 A Posteriori Error Analysis Using the Residual.

2.5 Roundoff Errors; Backward Stability.

2.6 Propagation of Roundoff Errors.

2.7 Backward Error Analysis of Gaussian Elimination.

2.8 Scaling.

2.9 Componentwise Sensitivity Analysis.

3 The Least Squares Problem.

3.1 The Discrete Square Problem.

3.2 Orthogonal Matrices, Rotators and Reflectors.

3.3 Solution of the Least Squares Problem.

3.4 The Gram-Schmidt Process.

3.5 Geometric Approach.

3.6 Updating the QR Decomposition.

4 The Singular Value Decomposition.

4.1 Introduction.

4.2 Some Basic Applications of Singular Values.

4.3 The SVD and the Least Squares Problem.

4.4 Sensitivity of the Least Squares Problem.

5 Eigenvalues and Eigenvectors I.

5.1 Systems of Differential Equations.

5.2 Basic Facts.

5.3 The Power Method and Some Simple Extensions.

5.4 Similarity Transforms.

5.5 Reduction to Hessenberg and Tridiagonal Forms.

5.6 Francis's Algorithm.

5.7 Use of Francis's Algorithm to Calculate Eigenvectors.

5.8 The SVD Revisted.

6 Eigenvalues and Eigenvectors II.

6.1 Eigenspaces and Invariant Subspaces.

6.2 Subspace Iteration and Simultaneous Iteration.

6.3 Krylov Subspaces and Francis's Algorithm.

6.4 Large Sparse Eigenvalue Problems.

6.5 Implicit Restarts.

6.6 The Jacobi-Davidson and Related Algorithms.

7 Eigenvalues and Eigenvectors III.

7.1 Sensitivity of Eigenvalues and Eigenvectors.

7.2 Methods for the Symmetric Eigenvalue Problem.

7.3 Product Eigenvalue Problems.

7.4 The Generalized Eigenvalue Problem.

8 Iterative Methods for Linear Systems.

8.1 A Model Problem.

8.2 The Classical Iterative Methods.

8.3 Convergence of Iterative Methods.

8.4 Descent Methods; Steepest Descent.

8.5 On Stopping Criteria.

8.6 Preconditioners.

8.7 The Conjugate-Gradient Method.

8.8 Derivation of the CG Algorithm.

8.9 Convergence of the CG Algorithm.

8.10 Indefinite and Nonsymmetric Problems.

References.

Index.

Index of MATLAB Terms.

最近チェックした商品