Bayesian Analysis of Gene Expression Data (Statistics in Practice)

個数:

Bayesian Analysis of Gene Expression Data (Statistics in Practice)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9780470517666
  • DDC分類 572.86501519542

Full Description

The field of high-throughput genetic experimentation is evolving rapidly, with the advent of new technologies and new venues for data mining. Bayesian methods play a role central to the future of data and knowledge integration in the field of Bioinformatics. This book is devoted exclusively to Bayesian methods of analysis for applications to high-throughput gene expression data, exploring the relevant methods that are changing Bioinformatics. Case studies, illustrating Bayesian analyses of public gene expression data, provide the backdrop for students to develop analytical skills, while the more experienced readers will find the review of advanced methods challenging and attainable. This book:



Introduces the fundamentals in Bayesian methods of analysis for applications to high-throughput gene expression data.
Provides an extensive review of Bayesian analysis and advanced topics for Bioinformatics, including examples that extensively detail the necessary applications.
Accompanied by website featuring datasets, exercises and solutions.

Bayesian Analysis of Gene Expression Data offers a unique introduction to both Bayesian analysis and gene expression, aimed at graduate students in Statistics, Biomedical Engineers, Computer Scientists, Biostatisticians, Statistical Geneticists, Computational Biologists, applied Mathematicians and Medical consultants working in genomics. Bioinformatics researchers from many fields will find much value in this book.

Contents

Table of Notation. 1 Bioinformatics and Gene Expression Experiments.

1.1 Introduction.

1.2 About This Book.

2 Basic Biology.

2.1 Background.

2.1.1 DNA Structures and Transcription.

2.2 Gene Expression Microarray Experiments.

3 Bayesian Linear Models for Gene Expression.

3.1 Introduction.

3.2 Bayesian Analysis of a Linear Model.

3.3 Bayesian Linear Models for Differential Expression.

3.4 Bayesian ANOVA for Gene Selection.

3.5 Robust ANOVA model with Mixtures of Singular Distributions.

3.6 Case Study.

3.7 Accounting for Nuisance Effects.

3.8 Summary and Further Reading.

4 Bayesian Multiple Testing and False Discovery Rate Analysis.

4.1 Introduction to Multiple Testing.

4.2 False Discovery Rate Analysis.

4.3 Bayesian False Discovery Rate Analysis.

4.4 Bayesian Estimation of FDR.

4.5 FDR and Decision Theory.

4.6 FDR and bFDR Summary.

5 Bayesian Classification for Microarray Data.

5.1 Introduction.

5.2 Classification and Discriminant Rules.

5.3 Bayesian Discriminant Analysis.

5.4 Bayesian Regression Based Approaches to Classification.

5.5 Bayesian Nonlinear Classification.

5.6 Prediction and Model Choice.

5.7 Examples.

5.8 Discussion.

6 Bayesian Hypothesis Inference for Gene Classes.

6.1 Interpreting Microarray Results.

6.2 Gene Classes.

6.3 Bayesian Enrichment Analysis.

6.4 Multivariate Gene Class Detection.

6.5 Summary.

7 Unsupervised Classification and Bayesian Clustering.

7.1 Introduction to Bayesian Clustering for Gene Expression Data.

7.2 Hierarchical Clustering.

7.3 K-Means Clustering.

7.4 Model-Based Clustering.

7.5 Model-Based Agglomerative Hierarchical Clustering.

7.6 Bayesian Clustering.

7.7 Principal Components.

7.8 Mixture Modeling.

7.8.1 Label Switching.

7.9 Clustering Using Dirichlet Process Prior.

7.9.1 Infinite Mixture of Gaussian Distributions.

8 Bayesian Graphical Models.

8.1 Introduction.

8.2 Probabilistic Graphical Models.

8.3 Bayesian Networks.

8.4 Inference for Network Models.

9 Advanced Topics.

9.1 Introduction.

9.2 Analysis of Time Course Gene Expression Data.

9.3 Survival Prediction Using Gene Expression Data.

Appendix A: Basics of Bayesian Modeling.

A.1 Basics.

A.1.1 The General Representation Theorem.

A.1.2 Bayes' Theorem.

A.1.3 Models Based on Partial Exchangeability.

A.1.4 Modeling with Predictors.

A.1.5 Prior Distributions.

A.1.6 Decision Theory and Posterior and Predictive Inferences.

A.1.7 Predictive Distributions.

A.1.8 Examples.

A.2 Bayesian Model Choice.

A.3 Hierarchical Modeling.

A.4 Bayesian Mixture Modeling.

A.5 Bayesian Model Averaging.

Appendix B: Bayesian Computation Tools.

B.1 Overview.

B.2 Large-Sample Posterior Approximations.

B.2.1 The Bayesian Central Limit Theorem.

B.2.2 Laplace's Method.

B.3 Monte Carlo Integration.

B.4 Importance Sampling.

B.5 Rejection Sampling.

B.6 Gibbs Sampling.

B.7 The Metropolis Algorithm and Metropolis-Hastings.

B.8 Advanced Computational Methods.

B.8.1 Block MCMC.

B.8.2 Truncated Posterior Spaces.

B.8.3 Latent Variables and the Auto-Probit Model.

B.8.4 Bayesian Simultaneous Credible Envelopes.

B.8.5 Proposal Updating.

B.9 Posterior Convergence Diagnostics.

B.10 MCMC Convergence and the Proposal.

B.10.1 Graphical Checks for MCMC Methods.

B.10.2 Convergence Statistics.

B.10.3 MCMC in High-Throughput Analysis.

B.11 Summary.

References.

Index.

最近チェックした商品