グリッドコンピューティング環境におけるデータマイニング<br>Data Mining in Grid Computing Environments

個数:

グリッドコンピューティング環境におけるデータマイニング
Data Mining in Grid Computing Environments

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9780470512586
  • DDC分類 660

基本説明

Provides a simultaneous design blueprint, user guide, and research agenda for current and future developments. Contents - 1. Data mining meets grid computing: time to dance. 2. Data analysis services in the Knowledge Grid. 3. GridMiner: an advanced support for e-science analytics. 4. ADaM services: scientific data mining in the service-oriented architecture paradigm. 5. Mining for misconfigured machines in grid systems. 6. FAEHIM: Federated Analysis Environment for Heterogeneous Intelligent Mining . 7. Scalable and privacy preserving distributed data analysis over a service-oriented platform, and more.

Full Description

Based around eleven international real life case studies and including contributions from leading experts in the field this groundbreaking book explores the need for the grid-enabling of data mining applications and provides a comprehensive study of the technology, techniques and management skills necessary to create them. This book provides a simultaneous design blueprint, user guide, and research agenda for current and future developments and will appeal to a broad audience; from developers and users of data mining and grid technology, to advanced undergraduate and postgraduate students interested in this field.

Contents

Preface. List of contributors.

1. Data mining meets grid computing: time to dance (Alberto Sánchez, Jesús Montes, Werner Dubitzky, Julio J. Valdés, María S. Pérez and Pedro de Miguel).

1.1 Introduction.

1.2 Data mining.

1.3 Grid computing.

1.4 Data mining grid - mining grid data.

1.5 Conclusions.

1.6 Summary of chapters in this volume.

2. Data analysis services in the Knowledge Grid (Eugenio Cesario, Antonio Congiusta, Domenico Talia and Paolo Trunfio).

2.1 Introduction.

2.2 Approach.

2.3 Knowledge Grid services.

2.4 Data analysis services.

2.5 Design of Knowledge Grid applications.

2.6 Conclusions.

3. GridMiner: an advanced support for e-science analytics (Peter Brezany, Ivan Janciak and A. Min Tjoa).

3.1 Introduction.

3.2 Rationale behind the design and development of GridMiner.

3.3 Use case.

3.4 Knowledge discovery process and its support by GridMiner.

3.5 Graphical user interface.

3.6 Future developments.

3.7 Conclusions.

4. ADaM services: scientific data mining in the service-oriented architecture paradigm (Rahul Ramachandran, Sara Graves, John Rushing, Ken Keiser, Manil Maskey, Hong Lin and Helen Conover).

4.1 Introduction.

4.2 ADaM system overview.

4.3 ADaM toolkit overview.

4.4 Mining in a service-oriented architecture.

4.5 Mining Web services.

4.6 Mining grid services.

4.7 Summary.

5. Mining for misconfigured machines in grid systems (Noam Palatin, Arie Leizarowitz, Assaf Schuster and Ran Wolff).

5.1 Introduction.

5.2 Preliminaries and related work.

5.3 Acquiring, pre-processing and storing data.

5.4 Data analysis.

5.5 The GMS.

5.6 Evaluation.

5.7 Conclusions and future work.

6. FAEHIM: Federated Analysis Environment for Heterogeneous Intelligent Mining (Ali Shaikh Ali and Omer F. Rana).

6.1 Introduction.

6.2 Requirements of a distributed knowledge discovery framework.

6.3 Workflow-based knowledge discovery.

6.4 Data mining toolkit.

6.5 Data mining service framework.

6.6 Distributed data mining services.

6.7 Data manipulation tools.

6.8 Availability.

6.9 Empirical experiments.

6.10 Conclusions.

7. Scalable and privacy preserving distributed data analysis over a service-oriented platform (William K. Cheung).

7.1 Introduction.

7.2 A service-oriented solution.

7.3 Background.

7.4 Model-based scalable, privacy preserving, distributed data analysis.

7.5 Modelling distributed data mining and workflow processes.

7.6 Lessons learned.

7.7 Further research directions.

7.8 Conclusions.

8. Building and using analytical workflows in Discovery Net (Moustafa Ghanem, Vasa Curcin, Patrick Wendel and Yike Guo).

8.1 Introduction.

8.2 Discovery Net system.

8.3 Architecture for Discovery Net.

8.4 Data management.

8.5 Example of a workflow study.

8.6 Future directions.

9. Building workflows that traverse the bioinformatics data landscape (Robert Stevens, Paul Fisher, Jun Zhao, Carole Goble and Andy Brass).

9.1 Introduction.

9.2 The bioinformatics data landscape.

9.3 The bioinformatics experiment landscape.

9.4 Taverna for bioinformatics experiments.

9.5 Building workflows in Taverna.

9.6 Workflow case study.

9.7 Discussion.

10. Specification of distributed data mining workflows with DataMiningGrid (Dennis Wegener and Michael May).

10.1 Introduction.

10.2 DataMiningGrid environment.

10.3 Operations for workflow construction.

10.4 Extensibility.

10.5 Case studies.

10.6 Discussion and related work.

10.7 Open issues.

10.8 Conclusions.

11. Anteater: service-oriented data mining (Renato A. Ferreira, Dorgival O. Guedes and Wagner Meira).

11.1 Introduction.

11.2 The architecture.

11.3 Runtime framework.

11.4 Parallel algorithms for data mining.

11.5 Visual metaphors.

11.6 Case studies.

11.7 Future developments.

11.8 Conclusions and future work.

12. DMGA: a generic brokering-based data mining grid architecture (Alberto Sánchez, María S. Pérez, Pierre Gueant, José M. Peña and Pilar Herrero).

12.1 Introduction.

12.2 DMGA overview.

12.3 Horizontal composition.

12.4 Vertical composition.

12.5 The need for brokering.

12.6 Brokering-based data mining grid architecture.

12.7 Use cases: Apriori, ID3 and J4.8 algorithms.

12.8 Related work.

12.9 Conclusions.

13. Grid-based data mining with the Environmental Scenario Search Engine (ESSE) (Mikhail Zhizhin, Alexey Poyda, Dmitry Mishin, Dmitry Medvedev, Eric Kihn and Vassily Lyutsarev).

13.1 Environmental data source: NCEP/NCAR reanalysis data set.

13.2 Fuzzy search engine.

13.3 Software architecture.

13.4 Applications.

13.5 Conclusions.

14. Data pre-processing using OGSA-DAI (Martin Swain and Neil P. Chue Hong).

14.1 Introduction.

14.2 Data pre-processing for grid-enabled data mining.

14.3 Using OGSA-DAI to support data mining applications.

14.4 Data pre-processing scenarios in data mining applications.

14.5 State of the art solutions for grid data management.

14.6 Discussion.

14.7 Open issues.

14.8 Conclusions.

Index.

最近チェックした商品