Algebra and Number Theory : An Integrated Approach

個数:

Algebra and Number Theory : An Integrated Approach

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 523 p.
  • 言語 ENG
  • 商品コード 9780470496367
  • DDC分類 512

Full Description

Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts.

The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory.

Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material.

Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.

Contents

Preface ix

Chapter 1 Sets 1

1.1 Operations on Sets 1

Exercise Set 1.1 6

1.2 Set Mappings 8

Exercise Set 1.2 19

1.3 Products of Mappings 20

Exercise Set 1.3 26

1.4 Some Properties of Integers 28

Exercise Set 1.4 39

Chapter 2 Matrices and Determinants 41

2.1 Operations on Matrices 41

Exercise Set 2.1 52

2.2 Permutations of Finite Sets 54

Exercise Set 2.2 64

2.3 Determinants of Matrices 66

Exercise Set 2.3 77

2.4 Computing Determinants 79

Exercise Set 2.4 91

2.5 Properties of the Product of Matrices 93

Exercise Set 2.5 103

Chapter 3 Fields 105

3.1 Binary Algebraic Operations 105

Exercise Set 3.1 118

3.2 Basic Properties of Fields 119

Exercise Set 3.2 129

3.3 The Field of Complex Numbers 130

Exercise Set 3.3 144

Chapter 4 Vector Spaces 145

4.1 Vector Spaces 146

Exercise Set 4.1 158

4.2 Dimension 159

Exercise Set 4.2 172

4.3 The Rank of a Matrix 174

Exercise Set 4.3 181

4.4 Quotient Spaces 182

Exercise Set 4.4 186

Chapter 5 Linear Mappings 187

5.1 Linear Mappings 187

Exercise Set 5.1 199

5.2 Matrices of Linear Mappings 200

Exercise Set 5.2 207

5.3 Systems of Linear Equations 209

Exercise Set 5.3 215

5.4 Eigenvectors and Eigenvalues 217

Exercise Set 5.4 223

Chapter 6 Bilinear Forms 226

6.1 Bilinear Forms 226

Exercise Set 6.1 234

6.2 Classical Forms 235

Exercise Set 6.2 247

6.3 Symmetric Forms over R 250

Exercise Set 6.3 257

6.4 Euclidean Spaces 259

Exercise Set 6.4 269

Chapter 7 Rings 272

7.1 Rings, Subrings, and Examples 272

Exercise Set 7.1 287

7.2 Equivalence Relations 288

Exercise Set 7.2 295

7.3 Ideals and Quotient Rings 297

Exercise Set 7.3 303

7.4 Homomorphisms of Rings 303

Exercise Set 7.4 313

7.5 Rings of Polynomials and Formal Power Series 315

Exercise Set 7.5 327

7.6 Rings of Multivariable Polynomials 328

Exercise Set 7.6 336

Chapter 8 Groups 338

8.1 Groups and Subgroups 338

Exercise Set 8.1 348

8.2 Examples of Groups and Subgroups 349

Exercise Set 8.2 358

8.3 Cosets 359

Exercise Set 8.3 364

8.4 Normal Subgroups and Factor Groups 365

Exercise Set 8.4 374

8.5 Homomorphisms of Groups 375

Exercise Set 8.5 382

Chapter 9 Arithmetic Properties of Rings 384

9.1 Extending Arithmetic to Commutative Rings 384

Exercise Set 9.1 399

9.2 Euclidean Rings 400

Exercise Set 9.2 404

9.3 Irreducible Polynomials 406

Exercise Set 9.3 415

9.4 Arithmetic Functions 416

Exercise Set 9.4 429

9.5 Congruences 430

Exercise Set 9.5 446

Chapter 10 The Real Number System 448

10.1 The Natural Numbers 448

10.2 The Integers 458

10.3 The Rationals 468

10.4 The Real Numbers 477

Answers to Selected Exercises 489

Index 513

最近チェックした商品