オンライン・オークションのモデリング:実践統計学<br>Modeling Online Auctions (Statistics in Practice)

個数:
電子版価格
¥19,265
  • 電子版あり

オンライン・オークションのモデリング:実践統計学
Modeling Online Auctions (Statistics in Practice)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 319 p.
  • 言語 ENG
  • 商品コード 9780470475652
  • DDC分類 519

基本説明

The authors draw upon their experience of working with online auction data and introduce the reader to state-of-the-art statistical methodology for extracting new knowledge from online auction data.

Full Description

Explore cutting-edge statistical methodologies for collecting, analyzing, and modeling online auction data Online auctions are an increasingly important marketplace, as the new mechanisms and formats underlying these auctions have enabled the capturing and recording of large amounts of bidding data that are used to make important business decisions. As a result, new statistical ideas and innovation are needed to understand bidders, sellers, and prices. Combining methodologies from the fields of statistics, data mining, information systems, and economics, Modeling Online Auctions introduces a new approach to identifying obstacles and asking new questions using online auction data.

The authors draw upon their extensive experience to introduce the latest methods for extracting new knowledge from online auction data. Rather than approach the topic from the traditional game-theoretic perspective, the book treats the online auction mechanism as a data generator, outlining methods to collect, explore, model, and forecast data. Topics covered include:



Data collection methods for online auctions and related issues that arise in drawing data samples from a Web site
Models for bidder and bid arrivals, treating the different approaches for exploring bidder-seller networks
Data exploration, such as integration of time series and cross-sectional information; curve clustering; semi-continuous data structures; and data hierarchies
The use of functional regression as well as functional differential equation models, spatial models, and stochastic models for capturing relationships in auction data
Specialized methods and models for forecasting auction prices and their applications in automated bidding decision rule systems

Throughout the book, R and MATLAB software are used for illustrating the discussed techniques. In addition, a related Web site features many of the book's datasets and R and MATLAB code that allow readers to replicate the analyses and learn new methods to apply to their own research.

Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes.

Visit this book's companion website by clicking here

Contents

Preface. Acknowledgments.

1 Introduction.

1.1 Online Auctions and Electronic Commerce.

1.2 Online Auctions and Statistical Challenges.

1.3 A Statistical Approach to Online Auction Research.

1.4 The Structure of this Book.

1.5 Data and Code Availability.

2 Obtaining Online Auction Data.

2.1 Collecting Data from the Web.

2.2 Web Data Collection and Statistical Sampling.

3 Exploring Online Auction Data.

3.1 Bid Histories: Bids versus "Current Price" Values.

3.2 Integrating Bid History Data With Cross-Sectional Auction Information.

3.3 Visualizing Concurrent Auctions.

3.4 Exploring Price Evolution and Price Dynamics.

3.5 Combining Price Curves with Auction Information via Interactive Visualization.

3.6 Exploring Hierarchical Information.

3.7 Exploring Price Dynamics via Curve Clustering.

3.8 Exploring Distributional Assumptions.

3.9 Exploring Online Auctions: Future Research Directions.

4 Modeling Online Auction Data.

4.1 Modeling Basics (Representing the Price Process).

4.2 Modeling The Relation Between Price Dynamics and Auction Information.

4.3 Modeling Auction Competition.

4.4 Modeling Bid and Bidder Arrivals.

4.5 Modeling Auction Networks.

5 Forecasting Online Auctions.

5.1 Forecasting Individual Auctions.

5.2 Forecasting Competing Auctions.

5.3 Automated Bidding Decisions.

Bibliography.

Index.

最近チェックした商品