Knowledge Discovery with Support Vector Machines (Wiley Series on Methods and Applications in Data Mining)

個数:
電子版価格
¥20,357
  • 電子版あり

Knowledge Discovery with Support Vector Machines (Wiley Series on Methods and Applications in Data Mining)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 246 p.
  • 言語 ENG
  • 商品コード 9780470371923
  • DDC分類 005.1

Full Description

An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover:



Knowledge discovery environments


Describing data mathematically


Linear decision surfaces and functions


Perceptron learning


Maximum margin classifiers


Support vector machines


Elements of statistical learning theory


Multi-class classification


Regression with support vector machines


Novelty detection



Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Contents

Preface. PART I.

1 What is Knowledge Discovery?

1.1 Machine Learning.

1.2 The Structure of the Universe X.

1.3 Inductive Learning.

1.4 Model Representations.

Exercises.

Bibliographic Notes.

2 Knowledge Discovery Environments.

2.1 Computational Aspects of Knowledge Discovery.

2.1.1 Data Access.

2.1.2 Visualization.

2.1.3 Data Manipulation.

2.1.4 Model Building and Evaluation.

2.1.5 Model Deployment.

2.2 Other Toolsets.

Exercises.

Bibliographic Notes.

3 Describing Data Mathematically.

3.1 From Data Sets to Vector Spaces.

3.1.1 Vectors.

3.1.2 Vector Spaces.

3.2 The Dot Product as a Similarity Score.

3.3 Lines, Planes, and Hyperplanes.

Exercises.

Bibliographic Notes.

4 Linear Decision Surfaces and Functions.

4.1 From Data Sets to Decision Functions.

4.1.1 Linear Decision Surfaces through the Origin.

4.1.2 Decision Surfaces with an Offset Term.

4.2 A Simple Learning Algorithm.

4.3 Discussion.

Exercises.

Bibliographic Notes.

5 Perceptron Learning.

5.1 Perceptron Architecture and Training.

5.2 Duality.

5.3 Discussion.

Exercises.

Bibliographic Notes.

6 Maximum Margin Classifiers.

6.1 Optimization Problems.

6.2 Maximum Margins.

6.3 Optimizing the Margin.

6.4 Quadratic Programming.

6.5 Discussion.

Exercises.

Bibliographic Notes.

PART II.

7 Support Vector Machines.

7.1 The Lagrangian Dual.

7.2 Dual MaximumMargin Optimization.

7.2.1 The Dual Decision Function.

7.3 Linear Support Vector Machines.

7.4 Non-Linear Support Vector Machines.

7.4.1 The Kernel Trick.

7.4.2 Feature Search.

7.4.3 A Closer Look at Kernels.

7.5 Soft-Margin Classifiers.

7.5.1 The Dual Setting for Soft-Margin Classifiers.

7.6 Tool Support.

7.6.1 WEKA.

7.6.2 R.

7.7 Discussion.

Exercises.

Bibliographic Notes.

8 Implementation.

8.1 Gradient Ascent.

8.1.1 The Kernel-Adatron Algorithm.

8.2 Quadratic Programming.

8.2.1 Chunking.

8.3 Sequential Minimal Optimization.

8.4 Discussion.

Exercises.

Bibliographic Notes.

9 Evaluating What has been Learned.

9.1 Performance Metrics.

9.1.1 The Confusion Matrix.

9.2 Model Evaluation.

9.2.1 The Hold-Out Method.

9.2.2 The Leave-One-Out Method.

9.2.3 N-Fold Cross-Validation.

9.3 Error Confidence Intervals.

9.3.1 Model Comparisons.

9.4 Model Evaluation in Practice.

9.4.1 WEKA.

9.4.2 R.

Exercises.

Bibliographic Notes.

10 Elements of Statistical Learning Theory.

10.1 The VC-Dimension and Model Complexity.

10.2 A Theoretical Setting for Machine Learning.

10.3 Empirical Risk Minimization.

10.4 VC-Confidence.

10.5 Structural Risk Minimization.

10.6 Discussion.

Exercises.

Bibliographic Notes.

PART III.

11 Multi-Class Classification.

11.1 One-versus-the-Rest Classification.

11.2 Pairwise Classification.

11.3 Discussion.

Exercises.

Bibliographic Notes.

12 Regression with Support Vector Machines.

12.1 Regression as Machine Learning.

12.2 Simple and Multiple Linear Regression.

12.3 Regression with Maximum Margin Machines.

12.4 Regression with Support Vector Machines.

12.5 Model Evaluation.

12.6 Tool Support.

12.6.1 WEKA.

12.6.2 R.

Exercises.

Bibliographic Notes.

13 Novelty Detection.

13.1 Maximum Margin Machines.

13.2 The Dual Setting.

13.3 Novelty Detection in R.

Exercises.

Bibliographic Notes.

Appendix A: Notation.

Appendix B: A Tutorial Introduction to R.

B.1 Programming Constructs.

B.2 Data Constructs.

B.3 Basic Data Analysis.

Bibliographic Notes.

References.

Index. 

最近チェックした商品