スマート材料システムとMEMS<br>Smart Material Systems and MEMS : Design and Development Methodologies

個数:

スマート材料システムとMEMS
Smart Material Systems and MEMS : Design and Development Methodologies

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 404 p.
  • 言語 ENG
  • 商品コード 9780470093610
  • DDC分類 621.381

基本説明

Addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications.

Full Description

Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail.

Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.

Contents

Preface. About the Authors.

PART 1: FUNDAMENTALS.

1. Introduction to Smart Systems.

1.1 Components of a smart system.

1.2 Evolution of smart materials and structures.

1.3 Application areas for smart systems.

1.4 Organization of the book.

References.

2. Processing of Smart Materials.

2.1 Introduction.

2.2 Semiconductors and their processing.

2.3 Metals and metallization techniques.

2.4 Ceramics.

2.5 Silicon micromachining techniques.

2.6 Polymers and their synthesis.

2.7 UV radiation curing of polymers.

2.8 Deposition techniques for polymer thin films.

2.9 Properties and synthesis of carbon nanotubes.

References.

PART 2: DESIGN PRINCIPLES.

3. Sensors for Smart Systems.

3.1 Introduction.

3.2 Conductometric sensors.

3.3 Capacitive sensors.

3.4 Piezoelectric sensors.

3.5 Magnetostrictive sensors.

3.6 Piezoresistive sensors.

3.7 Optical sensors.

3.8 Resonant sensors.

3.9 Semiconductor-based sensors.

3.10 Acoustic sensors.

3.11 Polymeric sensors.

3.12 Carbon nanotube sensors.

References.

4. Actuators for Smart Systems.

4.1 Introduction.

4.2 Electrostatic transducers.

4.3 Electromagnetic transducers.

4.4 Electrodynamic transducers.

4.5 Piezoelectric transducers.

4.6 Electrostrictive transducers.

4.7 Magnetostrictive transducers.

4.8 Electrothermal actuators.

4.9 Comparison of actuation schemes.

References.

5. Design Examples for Sensors and Actuators.

5.1 Introduction.

5.2 Piezoelectric sensors.

5.3 MEMS IDT-based accelerometers.

5.4 Fiber-optic gyroscopes.

5.5 Piezoresistive pressure sensors.

5.6 SAW-based wireless strain sensors.

5.7 SAW-based chemical sensors.

5.8 Microfluidic systems.

References.

PART 3: MODELING TECHNIQUES.

6. Introductory Concepts in Modeling.

6.1 Introduction to the theory of elasticity.

6.2 Theory of laminated composites.

6.3 Introduction to wave propagation in structures.

References.

7. Introduction to the Finite Element Method.

7.1 Introduction.

7.2 Variational principles.

7.3 Energy functionals and variational operator.

7.4 Weak form of the governing differential equation.

7.5 Some basic energy theorems.

7.6 Finite element method.

7.7 Computational aspects in the finite element method.

7.8 Superconvergent finite element formulation.

7.9 Spectral finite element formulation.

References.

8. Modeling of Smart Sensors and Actuators.

8.1 Introduction.

8.2 Finite element modeling of a 3-D composite laminate with embedded piezoelectric sensors and actuators.

8.3 Superconvergent smart thin-walled box beam element.

8.4 Modeling of magnetostrictive sensors and actuators.

8.5 Modeling of micro electromechanical systems.

8.6 Modeling of carbon nanotubes (CNTs).

References.

9. Active Control Techniques.

9.1 Introduction.

9.2 Mathematical models for control theory.

9.3 Stability of control system.

9.4 Design concepts and methodology.

9.5 Modal order reduction.

9.6 Active control of vibration and waves due to broadband excitation.

References.

PART 4: FABRICATION METHODS AND APPLICATIONS.

10. Silicon Fabrication Techniques for MEMS.

10.1 Introduction.

10.2 Fabrication processes for silicon MEMS.

10.3 Deposition techniques for thin films in MEMS.

10.4 Bulk micromachining for silicon-based MEMS.

10.5 Silicon surface micromachining.

10.6 Processing by both bulk and surface micromachining.

10.7 LIGA process.

References.

11. Polymeric MEMS Fabrication Techniques.

11.1 Introduction.

11.2 Microstereolithography.

11.3 Micromolding of polymeric 3-D structures.

11.4 Incorporation of metals and ceramics by polymeric processes.

11.5 Combined silicon and polymer structures.

References.

12. Integration and Packaging of Smart Microsystems.

12.1 Integration of MEMS and microelectronics.

12.2 MEMS packaging.

12.3 Packaging techniques.

12.4 Reliability and key failure mechanisms.

12.5 Issues in packaging of microsystems.

References.

13. Fabrication Examples of Smart Microsystems.

13.1 Introduction.

13.2 PVDF transducers.

13.3 SAW accelerometer.

13.4 Chemical and biosensors.

13.5 Polymeric fabrication of a microfluidic system.

References.

14. Structural Health Monitoring Applications.

14.1 Introduction.

14.2 Structural health monitoring of composite wing-type structures using magnetostrictive sensors/actuators.

14.3 Assesment of damage severity and health monitoring using PZT sensors/actuators.

14.4 Actuation of DCB specimen under Mode-II dynamic loading.

14.5 Wireless MEMS-IDT microsensors for health monitoring of structures and systems.

References.

15. Vibration and Noise-Control Applications.

15.1 Introduction.

15.2 Active vibration control in a thin-walled box beam.

15.3 Active noise control of structure-borne vibration and noise in a helicopter cabin.

References.

Index.

最近チェックした商品