Network Modeling and Simulation : A Practical Perspective

個数:

Network Modeling and Simulation : A Practical Perspective

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9780470035870
  • DDC分類 003.3

Full Description

Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines.

Key features:



Provides the tools and strategies needed to build simulation models from the ground up rather than providing solutions to specific problems.
Includes a new simulation tool, CASiNO built by the authors.
Examines the core concepts of systems simulation and modeling.
Presents code examples to illustrate the implementation process of commonly encountered simulation tasks.

Offers examples of industry-standard modeling methodology that can be applied in steps to tackle any modeling problem in practice.

Contents

Preface. Acknowledgements.

1 Basic Concepts and Techniques.

1.1 Why Is Simulation Important?

1.2 What Is a Model?

1.3 Performance Evaluation Techniques.

1.4 Development of Systems Simulation.

1.5 Summary.

Recommended Reading.

2 Designing and Implementing a Discrete-Event Simulation Framework.

2.1 The Scheduler.

2.2 The Simulation Entities.

2.3 The Events.

2.4 Tutorial 1: Hello World.

2.5 Tutorial 2: Two-Node Hello Protocol.

2.6 Tutorial 3: Two-Node Hello through a Link.

2.7 Tutorial 4: Two-Node Hello through a Lossy Link.

2.8 Summary.

Recommended Reading.

3 Honeypot Communities: A Case Study with the Discrete-Event Simulation Framework.

3.1 Background.

3.2 System Architecture.

3.3 Simulation Modeling.

3.4 Simulation Execution.

3.5 Output Analysis.

3.6 Summary.

Recommended Reading.

4 Monte Carlo Simulation.

4.1 Characteristics of Monte Carlo Simulations.

4.2 The Monte Carlo Algorithm.

4.3 Merits and Drawbacks.

4.4 Monte Carlo Simulation for the Electric Car Charging Station.

4.5 Summary.

Recommended Reading.

5 Network Modeling.

5.1 Simulation of Networks.

5.2 The Network Modeling and Simulation Process.

5.3 Developing Models.

5.4 Network Simulation Packages.

5.5 OPNET: A Network Simulation Package.

5.6 Summary.

Recommended Reading.

6 Designing and Implementing CASiNO: A Network Simulation Framework.

6.1 Overview.

6.2 Conduits.

6.3 Visitors.

6.4 The Conduit Repository.

6.5 Behaviors and Actors.

6.6 Tutorial 1: Terminals.

6.7 Tutorial 2: States.

6.8 Tutorial 3: Making Visitors.

6.9 Tutorial 4: Muxes.

6.10 Tutorial 5: Factories.

6.11 Summary.

Recommended Reading.

7 Statistical Distributions and Random Number Generation.

7.1 Introduction to Statistical Distributions.

7.2 Discrete Distributions.

7.3 Continuous Distributions.

7.4 Augmenting CASiNO with Random Variate Generators.

7.5 Random Number Generation.

7.6 Frequency and Correlation Tests.

7.7 Random Variate Generation.

7.8 Summary.

Recommended Reading.

8 Network Simulation Elements: A Case Study Using CASiNO.

8.1 Making a Poisson Source of Packets.

8.2 Making a Protocol for Packet Processing.

8.3 Bounding Protocol Resources.

8.4 Making a Round-Robin (De)multiplexer.

8.5 Dynamically Instantiating Protocols.

8.6 Putting It All Together.

8.7 Summary.

9 Queuing Theory.

9.1 Introduction to Stochastic Processes.

9.2 Discrete-Time Markov Chains.

9.3 Continuous-Time Markov Chains.

9.4 Basic Properties of Markov Chains.

9.5 Chapman-Kolmogorov Equation.

9.6 Birth-Death Process.

9.7 Little's Theorem.

9.8 Delay on a Link.

9.9 Standard Queuing Notation.

9.10 The M/M/1 Queue.

9.11 The M/M/m Queue.

9.12 The M/M/1/b Queue.

9.13 The M/M/m/m Queue.

9.14 Summary.

Recommended Reading.

10 Input Modeling and Output Analysis.

10.1 Data Collection.

10.2 Identifying the Distribution.

10.3 Estimation of Parameters for Univariate Distributions.

10.4 Goodness-of-Fit Tests.

10.5 Multivariate Distributions.

10.6 Selecting Distributions without Data.

10.7 Output Analysis.

10.8 Summary.

Recommended Reading.

11 Modeling Network Traffic.

11.1 Introduction.

11.2 Network Traffic Models.

11.3 Traffic Models for Mobile Networks.

11.4 Global Optimization Techniques.

11.5 Particle Swarm Optimization.

11.6 Optimization in Mathematics.

11.7 Summary.

Recommended Reading.

Index.

最近チェックした商品