複合材料の計算メゾ力学<br>Computational Mesomechanics of Composites : Numerical Analysis of the Effect of Microstructures of Composites of Strength and Damage Resistance

個数:

複合材料の計算メゾ力学
Computational Mesomechanics of Composites : Numerical Analysis of the Effect of Microstructures of Composites of Strength and Damage Resistance

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 276 p.
  • 言語 ENG
  • 商品コード 9780470027646
  • DDC分類 620.1183

Full Description


Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.

Contents

Preface. 1 Composites. 1.1. Classification and types of composites. 1.2. Deformation, damage and fracture of composites: micromechanisms and roles of phases. 2. Mesoscale level in the mechanics of materials. 2.1. On the definitions of scale levels: Micro- and mesomechanics. 2.2. Size effects. 2.3. Biocomposites. 2.4. On some concepts of the improvement of material properties. 2.5. Physical mesomechanics of materials. 2.6 Topological and statistical description of microstructures of composites. 3. Damage and failure of materials: Concepts and methods of modeling. 3.1. Fracture mechanics: Basic concepts. 3.2. Statistical theories of strength. 3.3. Damage mechanics. 3.4 Numerical modeling of damage and fracture. 4. Microstructure-strength relationships of composites: Concepts and methods of analysis. 4.1. Interaction between elements of microstructures: physical and mechanical models. 4.2. Multi-scale modeling of materials and homogenization. 4.3. Analytical estimations and bounds of overall elastic properties of composites. 4.4. Computational models of microstructures and strength of composites. 5. Computational experiments in the mechanics of materials: concepts and tools. 5.1. Concept of computational experiments in the mechanics of materials. 5.2. Input data for the simulations: Determination of material properties. 5.3. Program codes for the automatic generation of 3D microstructural models of materials. 6. Numerical mesomechanical experiments: Analysis of the effect of microstructure of materials on the deformation and damage resistance by virtual testing. 6.1 Finite element models of composite microstructures. 6.2 Material properties used in the simulations. 6.3 Damage modeling in composites with the User Defined Fields. 6.4 Stability and reproducibility of the simulations. 6.5 Effect of the amount and the volume content of particles on the deformation and damage in the composite. 6.6 Effect of particle clustering and the gradient distribution of particles. 6.7 Effect of the variations of particle sizes on the damage evolution. 6.8 Ranking of microstructures and the effect of gradient orientation. 7. Graded particle-reinforced composites: Effect of the parameters of graded microstructures on the deformation and damage. 7.1 Damage evolution in graded composites and the effect of the degree of gradient. 7.2 "Bilayer" model of a graded composite. 7.3 Effect of the shape and orientation of whiskers and elongated particles on the strength and damage evolution: non-graded composites. 7.4 Effect of the shape and orientation of elongated particles on the strength and damage evolution: the case of graded composite materials. 7.5 Effect of statistical variations of local strengths of reinforcing particles and the distribution of the particle sizes. 7.6 Combined Reuss/Voigt model and its application to the estimation of stiffness of graded materials. 8. Particle clustering in composites: Effect of clustering on the mechanical behavior and damage evolution. 8.1. Finite element modeling of the effect of clustering of particles on the damage evolution. 8.2. Analytical modeling of the effect of particle clustering on the damage resistance. 9. Interpenetrating phase composites: Numerical simulations of deformation and damage. 9.1. Geometry-based and voxel array based 3D FE model generation: comparison. 9.2. Gradient interpenetrating phase composites. 9.3. Isotropic interpenetrating phase composites. 10. Fiber reinforced composites: Numerical analysis of damage initiation and growth. 10.1 Modeling of strength and damage of fiber reinforced composites: a brief overview. 10.2 Mesomechanical simulations of damage initiation and evolution in fiber reinforced composites. 11. Contact damage and wear of composite tool materials: Micro-macro relationships. 11.1 Micromechanical modeling of the contact wear of composites: a brief overview. 11.2 Mesomechanical simulations of wear of grinding wheels. 11.3 Micro-macro dynamical transitions for the contact wear of composites: "black box modeling" approach. 11.4 Microscale scattering of the tool material properties and the macroscopic efficiency of the tool. 12. Future fields: Computational mesomechanics and nanomaterials. Conclusions. References.

最近チェックした商品