Strength and Conditioning : Biological Principles and Practical Applications

個数:
電子版価格
¥14,130
  • 電子版あり

Strength and Conditioning : Biological Principles and Practical Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 461 p.
  • 言語 ENG
  • 商品コード 9780470019184
  • DDC分類 613.711

Full Description

"I recommend that you read and use the information in this book to provide your athletes with the best chances of performing at their best"
from the foreword by Sir Clive Woodward, Olympic Performance Director, British Olympic Association This book provides the latest scientific and practical information in the field of strength and conditioning.

The text is presented in four sections, the first of which covers the biological aspects of the subject, laying the foundation for a better understanding of the second on the biological responses to strength and conditioning programs. Section three deals with the most effective monitoring strategies for evaluating a training program and establishing guidelines for writing a successful strength and conditioning program. The final section examines the role of strength and conditioning as a rehabilitation tool and as applied to those with disabilities.

This book is an invaluable textbook and reference both for academic programs and for the continuing education of sports professionals.



Integrates the latest research on physiological, anatomical and biomechanical aspects of strength and conditioning
Offers numerous practical examples of applications
Provides guidelines for writing and monitoring effective strength training programs

Contents

Foreword (Sir Clive Woodward). Preface.

1.1 Skeletal Muscle Physiology (Valmor Tricoli).

1.1.1 Introduction.

1.1.2 Skeletal muscle macrostructure.

1.1.3 Skeletal muscle microstructure.

1.1.4 Contraction mechanism.

1.1.5 Muscle fibre types.

1.1.6 Muscle architecture.

1.1.7 Hypertrophy and hyperplasia.

1.1.8 Satellite cells.

1.2 Neuromuscular Physiology (Alberto Rainoldi and Marco Gazzoni).

1.2.1 The neuromuscular system.

1.2.2 Muscle fatigue.

1.2.3 Muscle function assessment.

1.3 Bone Physiology (Jörn Rittweger).

1.3.1 Introduction.

1.3.2 Bone anatomy.

1.3.3 Bone biology.

1.3.4 Mechanical functions of bone.

1.3.5 Adaptive processes in bone.

1.3.6 Endocrine involvement of bone.

1.4 Tendon Physiology (Nicola Maffulli, Umile Giuseppe Longo, Filippo Spiezia and Vincenzo Denaro).

1.4.1 Tendons.

1.4.2 The musculotendinous junction.

1.4.3 The osteotendinous junction.

1.4.4 Nerve supply.

1.4.5 Blood supply.

1.4.6 Composition.

1.4.7 Collagen formation.

1.4.8 Cross-links.

1.4.9 Elastin.

1.4.10 Cells.

1.4.11 Ground substance.

1.4.12 Crimp.

1.5 Bioenergetics of Exercise (R.J. Maughan).

1.5.1 Introduction.

1.5.2 Exercise, energy, work, and power.

1.5.3 Sources of energy.

1.5.4 The tricarboxylic acid (TCA) cycle.

1.5.5 Oxygen delivery.

1.5.6 Energy stores.

1.6 Respiratory and Cardiovascular Physiology (Jeremiah J. Peiffer and Chris R. Abbiss).

1.6.1 The respiratory system.

1.6.2 The cardiovascular system.

1.6.3 Conclusion.

1.7 Genetic and Signal Transduction Aspects of Strength Training (Henning Wackerhage, Arimantas Lionikas, Stuart Gray and Aivaras Ratkevicius).

1.7.1 Genetics of strength and trainability.

1.7.2 Signal transduction pathways that mediate the adaptation to strength training.

1.8 Strength and Conditioning Biomechanics (Robert U. Newton).

1.8.1 Introduction.

1.8.2 Biomechanical concepts for strength and conditioning.

1.8.3 The force-velocity-power relationship.

1.8.4 Musculoskeletal machines.

1.8.5 Biomechanics of muscle function.

1.8.6 Body size, shape, and power-to-weight ratio.

1.8.7 Balance and stability.

1.8.8 The stretch-shortening cycle.

1.8.9 Biomechanics of resistance machines.

1.8.10 Machines vs free weights.

1.8.11 Conclusion.

2.1 Neural Adaptations to Resistance Exercise (Per Aagaard).

2.1.1 Introduction.

2.1.2 Effects of strength training on mechanical muscle function.

2.1.3 Effects of strength training on neural function.

2.1.4 Conclusion.

2.2 Structural and Molecular Adaptations to Training (Jesper L. Andersen).

2.2.1 Introduction.

2.2.2 Protein synthesis and degradation in human skeletal muscle.

2.2.3 Muscle hypertrophy and atrophy.

2.2.4 What is the significance of satellite cells in human skeletal muscle?

2.2.5 Concurrent strength and endurance training: consequences for muscle adaptations.

2.3 Adaptive Processes in Human Bone and Tendon (Constantinos N. Maganaris, Jörn Rittweger and Marco V. Narici).

2.3.1 Introduction.

2.3.2 Bone.

2.3.3 Tendon.

2.3.4 Conclusion.

2.4 Biomechanical Markers and Resistance Training (Christian Cook and Blair Crewther).

2.4.1 Introduction.

2.4.2 Testosterone responses to resistance training.

2.4.3 Cortisol responses to resistance training.

2.4.4 Dual actions of testosterone and cortisol.

2.4.5 Growth hormone responses to resistance training.

2.4.6 Other biochemical markers.

2.4.7 Limitations in the use and interpretation of biochemical markers.

2.4.8 Applications of resistance training.

2.4.9 Conclusion.

2.5 Cardiovascular Adaptations to Strength and Conditioning (Andy Jones and Fred DiMenna).

2.5.1 Introduction.

2.5.2 Cardiovascular function.

2.5.3 Cardiovascular adaptations to training.

2.5.4 Cardiovascular-related adaptations to training.

2.5.5 Conclusion.

2.6 Exercise-induced Muscle Damage and Delayed-onset Muscle Soreness (DOMS) (Kazunori Nosaka).

2.6.1 Introduction.

2.6.2 Symptoms and markers of muscle damage.

2.6.3 Relationship between DOMS and other indicators.

2.6.4 Factors influencing the magnitude of muscle damage.

2.6.5 Muscle damage and training.

2.6.6 Conclusion.

2.7 Alternative Modalities of Strength and Conditioning: Electrical Stimulation and Vibration (Nicola A. Maffiuletti and Marco Cardinale).

2.7.1 Introduction.

2.7.2 Electrical-stimulation exercise.

2.7.3 Vibration exercise.

2.8 The Stretch-Shortening Cycle (SSC) (Anthony Blazevich).

2.8.1 Introduction.

2.8.2 Mechanisms responsible for performance enhancement with the SSC.

2.8.3 Force unloading: a requirement for elastic recoil.

2.8.4 Optimum MTU properties for SSC performance.

2.8.5 Effects of the transition time between stretch and shortening on SSC performance.

2.8.6 Conclusion.

2.9 Repeated-sprint Ability (RSA) (David Bishop and Olivier Girard).

2.9.1 Introduction.

2.9.2 Limiting factors.

2.9.3 Ergogenic aids and RSA.

2.9.4 Effects of training on RSA.

2.9.5 Conclusion.

2.10 The Overtraining Syndrome (OTS) (Romain Meeusen and Kevin De Pauw).

2.10.1 Introduction.

2.10.2 Definitions.

2.10.3 Prevalence.

2.10.4 Mechanisms and diagnosis.

2.10.5 Prevention.

2.10.6 Conclusion.

3.1 Principles of Athlete Testing (Robert U. Newton and Marco Cardinale).

3.1.1 Introduction.

3.1.2 General principles of athlete testing.

3.1.3 Maximum strength.

3.1.4 Ballistic testing.

3.1.5 Reactive strength tests.

3.1.6 Eccentric strength tests.

3.1.7 Conclusion.

3.2 Speed and Agility Assessment (Warren Young and Jeremy Sheppard).

3.2.1 Speed.

3.2.2 Agility.

3.2.3 Conclusion.

3.3 Testing Anaerobic Capacity and Repeated-sprint Ability (David Bishop and Matt Spencer).

3.3.1 Introduction.

3.3.2 Testing anaerobic capacity.

3.3.3 Testing repeated-sprint ability.

3.3.4 Conclusion.

3.4 Cardiovascular Assessment and Aerobic Training Prescription (Andy Jones and Fred DiMenna).

3.4.1 Introduction.

3.4.2 Cardiovascular assessment.

3.4.3 Aerobic training prescription .

3.4.4 Conclusion.

3.5 Biochemical Monitoring in Strength and Conditioning (Michael R. McGuigan and Stuart J. Cormack).

3.5.1 Introduction.

3.5.2 Hormonal monitoring.

3.5.3 Metabolic monitoring.

3.5.4 Immunological and haematological monitoring.

3.5.5 Practical application.

3.6 Body Composition: Laboratory and Field Methods of Assessment (Arthur Stewart and Tim Ackland).

3.6.1 Introduction.

3.6.2 History of body composition methods.

3.6.3 Fractionation models for body composition.

3.6.4 Biomechanical imperatives for sports performance.

3.6.5 Methods of assessment.

3.6.6 Profiling.

3.6.7 Conclusion.

3.7 Total Athlete Management (TAM) and Performance Diagnosis (Robert U. Newton and Marco Cardinale).

3.7.1 Total athlete management.

3.7.2 Performance diagnosis.

3.7.3 Conclusion.

4.1 Resistance Training Modes: A Practical Perspective (Michael H. Stone and Margaret E. Stone).

4.1.1 Introduction.

4.1.2 Basic training principles.

4.1.3 Strength, explosive strength, and power.

4.1.4 Conclusion.

4.2 Training Agility and Change-of-direction Speed (CODS) (Jeremy Sheppard and Warren Young).

4.2.1 Factors affecting agility.

4.2.2 Organization of training.

4.2.3 Change-of-direction speed.

4.2.4 Perceptual and decision-making factors.

4.2.5 Training agility.

4.2.6 Conclusion.

4.3 Nutrition for Strength Training (Christopher S. Shaw and Kevin D. Tipton).

4.3.1 Introduction.

4.3.2 The metabolic basis of muscle hypertrophy.

4.3.3 Optimal protein intake.

4.3.4 Acute effects of amino acid/protein ingestion.

4.3.5 Conclusion.

4.4 Flexibility (William A. Sands).

4.4.1 Definitions.

4.4.2 What is stretching?

4.4.3 A model of effective movement: the integration of flexibility and strength.

4.5 Sensorimotor Training (Urs Granacher, Thomas Muehlbauer, Wolfgang Taube, Albert Gollhofer and Markus Gruber).

4.5.1 Introduction.

4.5.2 The importance of sensorimotor training to the promotion of postural control and strength.

4.5.3 The effects of sensorimotor training on postural control and strength.

4.5.4 Adaptive processes following sensorimotor training.

4.5.5 Characteristics of sensorimotor training.

4.5.6 Conclusion.

5.1 Strength and Conditioning as a Rehabilitation Tool (Andreas Schlumberger).

5.1.1 Introduction.

5.1.2 Neuromuscular effects of injury as a basis for rehabilitation strategies.

5.1.3 Strength and conditioning in retraining of the neuromuscular system.

5.1.4 Conclusion.

5.2 Strength Training for Children and Adolescents (Avery D. Faigenbaum).

5.2.1 Introduction.

5.2.2 Risks and concerns associated with youth strength training.

5.2.3 The effectiveness of youth resistance training.

5.2.4 Physiological mechanisms for strength development.

5.2.5 Potential health and fitness benefits.

5.2.6 Youth strength-training guidelines.

5.2.7 Conclusion.

5.3 Strength and Conditioning Considerations for the Paralympic Athlete (Mark Jarvis, Matthew Cook and Paul Davies).

5.3.1 Introduction.

5.3.2 Programming considerations.

5.3.3 Current controversies in Paralympic strength and conditioning.

5.3.4 Specialist equipment.

5.3.5 Considerations for specific disability groups.

5.3.6 Tips for more effective programming.

Index.

最近チェックした商品