Symbolic Data Analysis and the Sodas Software

個数:

Symbolic Data Analysis and the Sodas Software

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 457 p.
  • 言語 ENG
  • 商品コード 9780470018835
  • DDC分類 005.74

基本説明

The result of the work of a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT.

Full Description

Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events.
This book is the result of the work  f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT.  It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.

Contents

Contributors. Foreword.

Preface.

ASSO Partners.

Introduction.

1. The state of the art in symbolic data analysis: overview and future (Edwin Diday).

PART I. DATABASES VERSUS SYMBOLIC OBJECTS.

2. Improved generation of symbolic objects from relational databases (Yves Lechevallier, Aicha El Golli and George Hébrail).

3. Exporting symbolic objects to databases (Donato Malerba, Floriana Esposito and Annalisa Appice).

4. A statistical metadata model for symbolic objects (Haralambos Papageorgiou and Maria Vardaki).

5. Editing symbolic data (Monique-Noirhomme-Fraiture, Paula Brito, Anne de Baenst-Vandenbroucke and Adolphe Nahimana).

6. The normal symbolic form (Marc Csernel and Francisco de A.T. de Carvalho).

7. Visualization (Monique-Noirhomme-Fraiture and Adolphe Nahimana).

PART II. UNSUPERVISED METHODS.

8. Dissimilarity and matching (Floriana Esposito, Donato Malerba and Annalisa Appice).

9. Unsupervised divisive classification (Jean-Paul Rasson, Jean-Yves Pirçon, Pascale Lallemand and Séverine Adans).

10. Hierarchical and pyramidal clustering (Paula Brito and Francisco de A.T. de Carvalho).

11 .Clustering methods in symbolic data analysis (Francisco de A.T. de Carvalho, Yves Lechevallier and Rosanna Verde).

12. Visualizing symbolic data by Kohonen maps (Hans-Hermann Bock).

13 .Validation of clustering structure: determination of the number of clusters (André Hardy).

14. Stability measures for assessing a partition and its clusters: application to symbolic data sets (Patrice Bertrand and Ghazi Bel Mufti).

15. Principal component analysis of symbolic data described by intervals (N.Carlo Lauro, Rosanna Verde and Antonio Irpino).

16. Generalized canonical analysis (N.Carlo Lauro, Rosanna Verde and Antonio Irpino).

PART III .SUPERVISED METHODS.

17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemand and Séverine Adans).

18. Factor discriminant analysis (N.Carlo Lauro, Rosanna Verde and Antonio Irpino).

19. Symbolic linear regression methodology (Filipe Afonso, Lynne Billard, Edwin Diday and Mehdi Limam).

20. Multi-layer perceptrons and symbolic data (Fabrice Rossi and Brieuc Conan-Guez).

PART IV. APPLICATION AND THE SODAS SOFTWARE.

21. Application to the Finnish, Spanish and Portuguese data of the European Social Survey (Soile Mustjärvi and Seppo Laaksonen).

22. People's life values and trust components in Europe: symbolic data analysis for 20-22 countries (Seppo Laaksonen).

23. Symbolic analysis of the Time Use Survey in the Basque country (Marta Mas and Haritz Olaeta).

24. SODAS2 software: overview and methodology (Anne de Baenst-Vandenbroucke and Yves Lechevallier).

Index.

最近チェックした商品