金融データ分析<br>Analysis of Financial Data

個数:
  • ポイントキャンペーン

金融データ分析
Analysis of Financial Data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9780470013212
  • DDC分類 332.015195

基本説明

It covers many of the major tools: regression and time series methods including discussion of nonstationary models, multivariate concepts such as cointegration and models of conditional volatility.

Full Description

Analysis of Financial Data teaches basic methods and techniques of data analysis to finance students.  It covers many of the major tools used by the financial economist i.e. regression and time series methods including discussion of nonstationary models, multivariate concepts such as cointegration and models of conditional volatility.   It shows students how to apply such techniques in the context of real-world empirical problems.  It adopts a largely non-mathematical approach relying on verbal and graphical intuition and contains extensive use of real data examples and involves readers in hands-on computer work. Analysis of Financial Data has been adapted by Gary Koop from his highly successful textbook Analysis of Economic Data.

Contents

Preface ix

Chapter 1 Introduction 1

Organization of the book 3

Useful background 4

Appendix 1.1: Concepts in mathematics used in this book 4

Chapter 2 Basic data handling 9

Types of financial data 9

Obtaining data 15

Working with data: graphical methods 16

Working with data: descriptive statistics 21

Expected values and variances 24

Chapter summary 26

Appendix 2.1: Index numbers 27

Appendix 2.2: Advanced descriptive statistics 30

Chapter 3 Correlation 33

Understanding correlation 33

Understanding why variables are correlated 39

Understanding correlation through XY-plots 40

Correlation between several variables 44

Covariances and population correlations 45

Chapter summary 47

Appendix 3.1: Mathematical details 47

Chapter 4 An introduction to simple regression 49

Regression as a best fitting line 50

Interpreting OLS estimates 53

Fitted values and R2: measuring the fit of a regression model 55

Nonlinearity in regression 61

Chapter summary 64

Appendix 4.1: Mathematical details 65

Chapter 5 Statistical aspects of regression 69

Which factors affect the accuracy of the estimate βˆ? 70

Calculating a confidence interval for β 73

Testing whether β =0 79

Hypothesis testing involving R2: the F-statistic 84

Chapter summary 86

Appendix 5.1: Using statistical tables for testing whether β =0 87

Chapter 6 Multiple regression 91

Regression as a best fitting line 93

Ordinary least squares estimation of the multiple regression model 93

Statistical aspects of multiple regression 94

Interpreting OLS estimates 95

Pitfalls of using simple regression in a multiple regression context 98

Omitted variables bias 100

Multicollinearity 102

Chapter summary 105

Appendix 6.1: Mathematical interpretation of regression coefficients 105

Chapter 7 Regression with dummy variables 109

Simple regression with a dummy variable 112

Multiple regression with dummy variables 114

Multiple regression with both dummy and non-dummy explanatory variables 116

Interacting dummy and non-dummy variables 120

What if the dependent variable is a dummy? 121

Chapter summary 122

Chapter 8 Regression with lagged explanatory variables 123

Aside on lagged variables 125

Aside on notation 127

Selection of lag order 132

Chapter summary 135

Chapter 9 Univariate time series analysis 137

The autocorrelation function 140

The autoregressive model for univariate time series 144

Nonstationary versus stationary time series 146

Extensions of the AR(1) model 149

Testing in the AR( p) with deterministic trend model 152

Chapter summary 158

Appendix 9.1: Mathematical intuition for the AR(1) model 159

Chapter 10 Regression with time series variables 161

Time series regression when X and Y are stationary 162

Time series regression when Y and X have unit roots: spurious regression 167

Time series regression when Y and X have unit roots: cointegration 167

Time series regression when Y and X are cointegrated: the error correction model 174

Time series regression when Y and X have unit roots but are not cointegrated 177

Chapter summary 179

Chapter 11 Regression with time series variables with several equations 183

Granger causality 184

Vector autoregressions 190

Chapter summary 203

Appendix 11.1: Hypothesis tests involving more than one coefficient 204

Appendix 11.2: Variance decompositions 207

Chapter 12 Financial volatility 211

Volatility in asset prices: Introduction 212

Autoregressive conditional heteroskedasticity (ARCH) 217

Chapter summary 222

Appendix A Writing an empirical project 223

Description of a typical empirical project 223

General considerations 225

Appendix B Data directory 227

Index 231

最近チェックした商品