統計学ハンドブック 第33巻:ビッグデータ・アナリティクス<br>Big Data Analytics (Handbook of Statistics)

個数:
電子版価格
¥33,640
  • 電子版あり

統計学ハンドブック 第33巻:ビッグデータ・アナリティクス
Big Data Analytics (Handbook of Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9780444634924
  • DDC分類 519.5

Full Description

While the term Big Data is open to varying interpretation, it is quite clear that the Volume, Velocity, and Variety (3Vs) of data have impacted every aspect of computational science and its applications. The volume of data is increasing at a phenomenal rate and a majority of it is unstructured. With big data, the volume is so large that processing it using traditional database and software techniques is difficult, if not impossible. The drivers are the ubiquitous sensors, devices, social networks and the all-pervasive web. Scientists are increasingly looking to derive insights from the massive quantity of data to create new knowledge. In common usage, Big Data has come to refer simply to the use of predictive analytics or other certain advanced methods to extract value from data, without any required magnitude thereon. Challenges include analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy. While there are challenges, there are huge opportunities emerging in the fields of Machine Learning, Data Mining, Statistics, Human-Computer Interfaces and Distributed Systems to address ways to analyze and reason with this data. The edited volume focuses on the challenges and opportunities posed by "Big Data" in a variety of domains and how statistical techniques and innovative algorithms can help glean insights and accelerate discovery. Big data has the potential to help companies improve operations and make faster, more intelligent decisions.

Contents

A. Modeling and Analytics
1. Document Informatics for Scientific Learning and Accelerated Discovery, Venu Govindaraju, Ifeoma Nwogu and Srirangaraj Setlur
2. An Introduction to Rare Event Simulation and Importance Sampling, Gino Biondini
3. A Large-scale Study of Language Usage as a Cognitive Biometric Trait, Neeti Pokhriyal, Ifeoma Nwogu and Venu Govindaraju
4. Customer Selection Utilizing Big Data Analytics, Jung Suk Kwac and Ram Rajagopal
5. Continuous Model Selection for Large-scale Recommender Systems, Simon Chan and Philip Treleaven
6. Zero-Knowledge Mechanisms for Private Release of Social Graph Summarization, Maryam Shoaran, Alex Thomo and Jens H. Weber
7. Distributed Confidence-Weighted Classification on Big Data Platforms, Nemanja Djuric, Slobodan Vucetic and Mihalo Grbovic

B. Applications and Infrastructure
8. Big Data Applications in Health Sciences and Epidemiology, Saumyadipta Pyne, Madhav Marathe and Anil Kumar S. Vullikanti
9. Big Data Driven Natural Language Processing Research and Applications, Venkat N. Gudivada, Dhana Rao and Vijay V. Raghavan
10. Analyzing Big Spatial & Big Spatiotemporal Data: A Case Study of Methods and Applications, Varun Chandola, Ranga Raju Vatsavai, Devashish Kumar and Auroop Ganguly
11. Experimental Computational Simulation Environments for Socio-Economic-Financial Analytics, Michal Galas
12. Terabyte-Scale Image Similarity Search, Diana Moise and Denis Shestakov
13. Measuring Inter-Site Engagement in a Network of Sites, Janette Lehmann, Mounia Lalmas and Ricardo Baeza-Yates
14. Scaling RDF Triple Stores in Size and Performance: Modeling SPARQL Queries as Graph Homomorphism Routines, Vito Giovanni Castellana, Jesse Weaver, Alessandro Morari, Antonino Tumeo, David Haglin, John Thomas Feo and Oreste Villa

最近チェックした商品