癌における予後の予測<br>Outcome Prediction in Cancer

個数:

癌における予後の予測
Outcome Prediction in Cancer

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 482 p.
  • 言語 ENG
  • 商品コード 9780444528551
  • DDC分類 616.994

基本説明

Organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle: clinical medicine, mathematics, biology, and bioinformatics.

Full Description

This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the rôle of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web.

Contents

Section 1 - The Clinical Problem.

THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER

Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer.
J. Woolgar
Liverpool Dental School, UK

Chapter 2: Survival after Treatment of Intraocular Melanoma.
B.E. Damato, A.F.G. Taktak,
Royal Liverpool University Hospital, UK

Chapter 3: Recent developments in relative survival analysis.
T. Hakulinen, T.A. Dyba,
Finnish Cancer Registry

Section 2 - Biological and Genetic Factors

Chapter 4: Environmental and genetic risk factors of lung cancer.
A. Cassidy, J.K. Field,
University of Liverpool, UK

Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer.
A.S. Jones,
University Hospital Aintree, UK

Section 3 - Mathematical Background of Prognostic Models

Chapter 6: Flexible hazard modelling for outcome prediction in cancer - perspectives for the use of bioinformatics knowledge.
E.Biganzoli1, P. Boracchi2
1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
2 Università degli Studi di Milano, Milano, Italy

Chapter 7: Information geometry for survival analysis and feature selection by neural networks.
A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1
1Università di Napoli, Italy
2INFN sez. Napoli, Italy
3Universit`a di Salerno, Italy
4INFN sez. distaccata di Salerno, Italy

Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study.
C.T.C. Arsene, P.J. Lisboa,
Liverpool John Moores University, UK

Section 4 - Application of Machine Learning Methods

Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients.
A. Marchevsky,
Cedars-Sinai Medical Center, Los Angeles, USA

Chapter 10: Machine learning contribution to solve prognosis medical problems.
F. Baronti, A. Micheli, A. Passaro, A.Starita,
University of Pisa, Italy

Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data.
A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3
1Katholieke Universiteit Leuven, Belgium
2University Nijmegen Medical Centre, The Netherlands
3Radboud University Nijmegen, The Netherlands

Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data.
M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3
1Coventry University, UK
2University of Birmingham, UK
3University of Newfoundland, Canada

Chapter 13: The impact of microarray technology in brain cancer.
M. Kounelakis1, M. Zervakis1, X. Kotsiakis2
1Technical University of Crete, GREECE
2District Hospital of Chania, GREECE

Section 5 - Dissemination of Information

Chapter 14: The web and the new generation of medical information.
J.M. Fonseca, A.D. Mora, P. Barroso
University of Lisbon, Portugal

Chapter 15: Geoconda: a web environment for multi-centre research.
C. Setzkorn, A.F.G. Taktak, B.E. Damato
Royal Liverpool University Hospital, Liverpool, UK

Chapter 16: The development and execution of medical prediction models.
M.W. Kattan1, M. Gönen2, P.T. Scardino2
1The Cleveland Clinic Fondation, Cleveland, USA
2Memorial Sloan-Kettering Cancer Center, New York, USA

最近チェックした商品