Energetic Materials : Part 2. Detonation, Combustion (Theoretical and Computational Chemistry)

個数:
電子版価格 ¥37,026
  • 電書あり

Energetic Materials : Part 2. Detonation, Combustion (Theoretical and Computational Chemistry)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Hardcover:ハードカバー版/ページ数 474 p.
  • 言語 ENG
  • 商品コード 9780444515193
  • DDC分類 662.2

Full Description

This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field.

The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate.

Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field.

Table of Contents

Part 2 Overview of Research in Energetic
Materials
B.M. Rice 1 (4)
Chapter 1. Sensitivity Correlations 5 (20)
P. Politzer and J.S. Murray
1. Introduction 5 (2)
2. Background 7 (1)
3. Sensitivity Correlations 8 (2)
4. TATB: A Case Study 10 (2)
5. Electrostatic Potential 12 (6)
6. Summary 18 (7)
Chapter 2. A Study of Chemical Micro-Mechanisms 25 (28)
of Initiation of Organic Polynitro Compounds
S. Zeman
1. Introduction 25 (2)
2. Data Sources 27 (8)
2.1 Impact Sensitivity Data 27 (1)
2.2 Electric Spark Sensitivity Data 27 (1)
2.3 Detonation Velocity 27 (1)
2.4 NMR Chemical Shifts 27 (8)
3. Basic Mechanisms of Thermal 35 (1)
Decomposition of Organic Polynitro and
Polynitroso Compounds
4. Initiation of Polynitro Compounds 36 (10)
4.1 Chemical Micro-Mechanism of 36 (4)
Initiation by Impact
4.2 Chemical Micro-Mechanism of 40 (3)
Initiation of Detonation
4.3 Chemical Micro-Mechanism of 43 (2)
Initiation by Electric Shock
4.4 Chemical Micro-Mechanism of Fission 45 (1)
of Polynitro Compounds by Action of Heat
and its Relation to Detonation
5. Conclusions 46 (7)
Chapter 3. Dynamics of Energy Disposal in 53 (18)
Unimolecular Reactions
C. Stopera and M. Page
1. Chemical Issues in the Initiation of 54 (1)
Detonations
2. The Key Role of Unimolecular Reactions 54 (2)
3. Quantum Chemistry Provides Potential 56 (1)
Energy Surface
4. Computing the Reaction Path 57 (4)
5. The Reaction Hamiltonian 61 (3)
6. Methylene Nitramine Decomposition 64 (4)
7. Concluding Remarks 68 (3)
Chapter 4. Initiation and Decomposition 71 (30)
Mechanisms of Energetic Materials
M.R. Manga
1. Introduction 71 (1)
2. Initiation Models 72 (1)
3. Nonradiative Energy Transfer in 73 (2)
Nitromethane
4. Effects of Pressure and Vacancies 75 (12)
4.1.1 Uniform Compression 75 (2)
4.1.2 Uniaxial Compression 77 (2)
4.1.3 C-H High Stretch Under Uniaxial 79 (2)
Compression
4.2 Effect of Molecular Vacancies 81 (2)
4.2.1 Uniform Compression 83 (2)
4.2.2 Uniaxial Compression 85 (1)
4.3 Summary 86 (1)
5. Decomposition of HMX 87 (14)
5.1 Computational Model 90 (1)
5.2 Kinetics of HMX Decomposition 91 (5)
5.3 Summary 96 (5)
Chapter 5. Initiation due to Plastic 101 (24)
Deformation from Shock or Impact
C. S. Coffey
1. Introduction 101 (2)
2. AFM and STM Observations of the 103 (5)
Microscopic Processes of Plastic Deformation
2.1 Micro-Indentations 104 (1)
2.2 Shock Response of Heavily Confined 105 (1)
Crystals
2.3 Impact Observations 106 (1)
2.4 Extreme Plastic Flow 106 (1)
2.5 Comparison with Gold 107 (1)
2.6 Summary of Experimental Observations 107 (1)
3. Theoretical Developments 108 (5)
3.1 The Deformed Lattice Potential 108 (1)
3.2 Plastic Flow and Energy Dissipation 109 (2)
3.3 Dislocation Tunneling, Particle Size 111 (1)
Effects and Shear Band Formation
3.4 Summary of Theoretical Results 112 (1)
4. Calculations 113 (7)
4.1 Anomalous Plastic Deformation in 113 (1)
Impacted RDX
4.2 Estimation of Shear Band Temperatures 114 (1)
4.3 Yield Stress and Particle Size 115 (1)
4.4 Approximate Energy Dissipation Rate 116 (2)
and P2 Δt Initiation Threshold
4.5 Initiation by Non-Planar Shock Waves 118 (1)
4.6 Initiation of Detonation 119 (1)
5. Conclusions 120 (5)
Chapter 6. Fast Molecular Processes in 125 (68)
Energetic Materials
D.D. Dlott
1. Introduction 125 (1)
2. The Phenomenology of Energetic Materials 126 (17)
2.1 Types of Energetic Materials 127 (1)
2.2 Shock Waves 127 (8)
2.2.1 Shock Waves in Continuous Elastic 128 (4)
Media
2.2.2 Shock Fronts in Real Materials 132 (3)
2.3 Detonations 135 (2)
2.4 Low Velocity Initiation 137 (2)
2.5 Shock Initiation 139 (2)
2.6 Sensitivity 141 (2)
3. Molecular Level Structure of Energetic 143 (10)
Materials
3.1 How Chemical Bonds are Broken 143 (1)
3.2 Band Structure of Molecular Solids 144 (3)
3.3 Molecular Crystals under Dynamic 147 (4)
Shock Compression
3.3.1 Shock-induced Electronic 147 (1)
Excitations
3.3.2 Shock-induced Mechanical 148 (2)
Excitations
3.3.3 Dynamic Picture of Shock 150 (1)
Excitation
3.4 Shock Compression of Nanometric 151 (2)
Energetic Materials
4. Up-pumping, Sensitivity and Ignition 153 (19)
4.1 Nitromethane Shock Initiation and the 154 (2)
Induction Time
4.2 Doorway Vibrations in Up-pumping 156 (4)
4.3 Up-pumping Calculations, Simulations 160 (3)
and Sensitivity
4.4 Up-pumping and Anharmonic Defects 163 (1)
4.5 Up-pumping and Thermal Conductivity 163 (2)
4.6 Coherent Pumping of Vibrations 165 (7)
5. Hot Spot Formation in Porous Materials
6. Molecular Response in Detonation 172 (3)
7. Fast Processes in Nanometric Energetic 175 (4)
Materials
8. Concluding Remarks 179 (14)
Chapter 7. The Equation of State and Chemistry 193 (32)
of Detonation Products
L.E. Fried, W.M. Howard, and J.M. Zaug
1. Introduction 193 (5)
2. Computational Method 198 (2)
3. Fluid Equations of State 200 (7)
4. Condensed Equations of State 207 (2)
5. Application to Detonation 209 (1)
6. Experimental 210 (3)
7. Results and Discussion 213 (8)
8. Conclusions 221 (4)
Chapter 8. Combustion Mechanisms and 225 (70)
Simplified-Kinetics Modeling of Homogeneous
Energetic Solids
M.Q. Brewster
1. Introduction 226 (2)
2. Mathematical Model of Macroscopically .227
Steady Combustion. .
2.1 Condensed Phase Model 228 (6)
2.1.1 Governing Equations 228 (3)
2.1.2 Solution of Condensed Phase 231 (3)
Equations
2.2 Gas Phase Model 234 (9)
2.2.1 Governing Equations 234 (5)
2.2.2 Solution of Gas Phase Equations 239 (4)
2.3 Complete Model--Gas and Condensed 243 (6)
Phases
2.3.1 High Gas Activation Energy 244 (1)
Solution (Intermediate Pressures)
2.3.2 Low Gas Activation Energy 244 (1)
Solution (Intermediate Pressures)
2.3.3 High and Low Pressure Regimes 244 (1)
(Condensed Phase Controlled Burning)
2.3.4 Sensitivity Parameters 245 (4)
3. Results for Macroscopically Steady 249 (24)
Combustion
3.1 Parametric (Non-Dimensional) Results 249 (9)
for Benchmark Case
3.1.1 Burning Rate or Mass Flux 250 (2)
3.1.2 Surface Temperature, Heat 252 (3)
Feedback, and Flame Standoff Distance
3.1.3 Sensitivity Parameters 255 (3)
3.2 Results for Common Materials 258 (15)
3.2.1 NC/NG Double Base Propellant 259 (9)
3.2.2 HMX 268 (5)
3.3 Summary of Steady-State Results 273 (1)
4. Quasi-Steady Theory of Unsteady Condition 273 (5)
4.1 Non-Linear Formulation 274 (2)
4.2 Linear Formulation 276 (2)
5. Results for Quasi-Steady, Oscillatory 278 (10)
Combustion
5.1 Parametric (Non-Dimensional) Results 278 (7)
for Benchmark Case
5.2 Results for Common Materials 285 (13)
5.2.1 NC/NG Double Base Propellant 286 (1)
5.2.2 HMX 286 (2)
6. Intrinsic Stability 288 (2)
7. Concluding Remarks 290 (5)
Chapter 9. Modeling of Nitramine Propellant 295 (56)
Combustion and Ignition
E.S. Kim, R. Yang and V. Yang
1. Introduction 297
1.1 Modeling Development of Steady-State 298 (1)
Combustion of Nitramine Propellants
1.2 Modeling Development of Ignition of 299 (1)
Nitramine Propellants
1.3 Modeling Development of Combustion of 300 (2)
Nitramine/GAP Pseudo-Propellants
2. Theoretical Formulation 302 (12)
2.1 Steady-State Combustion of RDX 302 (1)
Monopropellant
2.2 Laser-Induced Ignition of RDX 303 (2)
Monopropellant
2.3 Steady-State Combustion of Nitraminel 305 (1)
GAP Pseudo-Propellants
2.4 Conservation Equations 306 (9)
2.4.1 Gas-Phase Processes 306 (1)
2.4.2 Gas-Phase Chemical Kinetics 307 (1)
2.4.3 Subsurface Two-Phase Processes 308 (1)
2.4.4 Subsurface Chemical Kinetics and 309 (2)
Phase Transition
2.4.5 Solid-Phase Processes 311 (1)
2.4.6 Radiative Heat Transfer 311 (2)
2.4.7 Boundary Conditions 313 (1)
3. Numerical Method 314 (1)
4. Discussion of Model Results 315 (31)
4.1 Steady-State Combustion of Nitramine 316 (6)
Propellants
4.2 Laser-Induced Ignition of RDX 322 (10)
Monopropellant
4.3 Steady-State Combustion of HMX/GAP 332 (19)
and RDX/GAP Pseudo-Propellants
4.3.1 HMX/GAP Pseudo-Propellant 332 (8)
4.3.2 RDX/GAP Pseudo-Propellant 340 (6)
5. Concluding Remarks 346 (5)
Chapter 10. Use of Kinetic Models for Solid 351 (22)
State Reactions in Combustion Simulations
J. Wang and C.A. Wight
1. Introduction 351 (5)
1.1 Steady Combustion Models vs. Unsteady 352 (1)
Combustion Models
1.2 Surface Reaction Kinetics 353 (3)
2. Model 356 (4)
3. Results and Discussion 360 (9)
3.1 Validation of the Steady State 360 (1)
Combustion with WSB Model
3.2 Ignition Time 361 (1)
3.3 Pressure Sensitivity and Surface 362 (2)
Temperature
3.4 Temperature Sensitivity 364 (1)
3.5 Effect of Kinetic Models 365 (10)
3.5.1 First-order Reaction Model 365 (2)
3.5.2 Second-order Reaction Model 367 (2)
4. Conclusion 369 (4)
Chapter 11. Towards Reliable Prediction of 373 (72)
Kinetics and Mechanisms for Elementary
Processes: Key Combustion Initiation Reactions
of Ammonium Perchlorate
R.S. Zhu and M.C. Lin
1. Introduction 374 (1)
2. Computational Methods 375 (4)
2.1 Ab Initio Calculations 375 (2)
2.2 Rate Constant Calculations 377 (2)
3. Results and Discussion 379 (57)
3.1 Unimolecular Decomposition of HC104 379 (3)
and HC1O3
3.2 Reactions of H and HO with HC104 382 (8)
3.2.1 H + C104 Reaction 382 (4)
3.2.2 HO + HC1O4 Reaction 386 (4)
3.3 Unimolecular Decomposition of C10X (x 390 (4)
= 2 - 4)
3.3.1 C100 and OC10 390 (3)
3.3.2 s-C103 393 (1)
3.3.3 C104 394 (1)
3.4 Bimolecular Reactions of C10X (x = 395 (41)
1-3)
3.4.1 HO + ClO 395 (5)
3.4.2 HO + OClO Reaction 400 (4)
3.4.3 HO + ClO03 404 (2)
3.4.4 HO2 + ClO 406 (5)
3.4.5 HO2 + OClO 411 (2)
3.4.6 O + ClO and its Reverse Reaction, 413 (2)
C1 + O2
3.4.7 ClO + C10 415 (8)
3.4.8 ClO + OClO 423 (13)
4. Concluding Remarks 436 (9)
Index for Parts 1 and 2 445