Intelligent Energy Systems using the Barnacles Mating Optimizer and Evolutionary Mating Algorithm : Foundations, Methods, and Applications (Advances in Intelligent Energy Systems)

個数:
  • 予約

Intelligent Energy Systems using the Barnacles Mating Optimizer and Evolutionary Mating Algorithm : Foundations, Methods, and Applications (Advances in Intelligent Energy Systems)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9780443337758

Full Description

Intelligent Energy Systems using the Barnacles Mating Optimizer and Evolutionary Mating Algorithm: Foundations, Methods, and Applications reveals the potential of innovative optimization algorithms to support sustainability in modern energy systems. This book provides a multidisciplinary foundation for the reader, with Part I breaking down fundamentals including the challenges to be addressed in renewable energy systems and detailed methodologies including swarm-, physics-, and human-based algorithms, before introducing the Barnacles Mating Optimizer and Evolutionary Mating Algorithm themselves. Part II drills deeper into examples, case studies, and applications for energy systems, offering comparative analysis with alternative tools, and providing complimentary MATLAB code using the latest Toolbox. A sandbox for readers to learn, skill-build, and develop in, 'Intelligent Energy Systems using BMO and EMA' provides an indispensable guide to these cutting-edge AI tools for new and experienced readers.

Contents

Part I: Modern Energy System Challenges: Fundamental Methodologies, Opportunities, and Solutions
1. Challenges of renewable energy systems and the artificial intelligence opportunity
2. Fundamentals of swarm-based algorithms
3. Fundamentals of evolution-based algorithms
4. Fundamentals of physics- and human-based algorithms
5. Fundamentals of the Barnacles Mating Optimizer
6. The Evolutionary Mating Algorithm: principles and applications
7. Deep learning approaches
7.i. Supervised learning with feedforward neural networks (FFNN)
7.ii. Other deep learning families

Part II: Applications for Renewable Energy Systems
8. State of charge (SOC) estimation in electric vehicles using deep learning feedforward neural networks
9. Hybrid of metaheuristic learning with deep learning in battery management of electric vehicles
10. Optimal reactive power dispatch using the Barnacle Mating Optimizer
11. Optimal power flow solutions enhanced by the Evolutionary Mating Algorithm
12. Renewable energy power forecasting, enhanced by hybrid Barnacle Mating Optimizer-Evolutionary Mating Algorithm deep learning
12.i. Solar power
12.ii. Wind power

最近チェックした商品