Current Trends in Breast Cancer Pathology, Screening, Diagnosis and Treatments

個数:
  • 予約
  • ポイントキャンペーン

Current Trends in Breast Cancer Pathology, Screening, Diagnosis and Treatments

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9780443333477

Full Description

The book "Cutting-edge Computational Intelligence in Healthcare with Convolution and Kronecker Convolution-based Approaches" discusses how advanced deep learning techniques enhance medical image analysis. These advances offer promising progress in healthcare through improvements in diagnostic accuracy, efficiency in medical image interpretation, and breakthroughs in treatment planning.

The book begins by explaining foundational concepts of deep learning and Convolutional Neural Networks (CNNs) to show how they extract meaningful features from medical images for tasks such as diagnosis and segmentation. It then explores Kronecker convolutions, highlighting their ability to better capture spatial hierarchies, use parameters more efficiently, and adapt to unique medical image characteristics. Subsequent sections cover applications like tumor detection, organ segmentation, and disease classification and examine real-world implementations of AI in diagnostic imaging, precision medicine, and continuous health monitoring through wearable devices. The final section addresses challenges, emerging trends, and future directions, emphasising how these techniques could shape advanced healthcare. Throughout the book, the authors bridge medicine, computer science, and machine learning to address complex problems in medical imaging and healthcare.

Contents

1. Breast cancer: Definition, history, symptoms, causes, worldwide scenario of breast cancer, breast cancer statistics globally
2. Breast cancer pathology, microscopic analysis, stages and classifications
3. Breast cancer molecular pathology, signalling pathways, genetic and epigenetic role
4. Breast cancer diagnosis, tools and techniques
5. Breast cancer treatment using surgical intervention, methods, advantages and disadvantages of surgical intervention

6. Breast cancer treatment using chemotherapy methods, advantages and disadvantages of chemotherapy

7. Breast cancer treatment using radiation therapy, advantages and disadvantages of radiation therapy
8. Breast cancer treatment using immunotherapy, advantages and disadvantages of immunotherapy
9. Problems and side effects with currently used breast cancer treatments
10. Impact of breast cancer on patient's quality of life
11. Prevention Strategies and Public Health: Breast cancer prevention, including lifestyle changes, risk assessment, and early intervention
12. Future trends and innovation in breast cancer diagnosis and treatments

最近チェックした商品