Machine Learning Models and Architectures for Biomedical Signal Processing

個数:

Machine Learning Models and Architectures for Biomedical Signal Processing

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 614 p.
  • 言語 ENG
  • 商品コード 9780443221583
  • DDC分類 610.28

Full Description

Machine Learning Models and Architectures for Biomedical Signal Processing presents the fundamental concepts of machine learning techniques for bioinformatics in an interactive way. The book investigates how efficient machine and deep learning models can support high-speed processors with reconfigurable architectures like graphic processing units (GPUs), Field programmable gate arrays (FPGAs), or any hybrid system. This great resource will be of interest to researchers working to increase the efficiency of hardware and architecture design for biomedical signal processing and signal processing techniques.

Contents

Section 1: Introduction to bioinformatics
1.1 Recent trends of bioinformatics
1.2 Biomedical signal processing technique
1.3 Transfer Learning based Arrhythmia classification using Electrocardiogram

Section 2: Machine learning models for biomedical signal processing
2.1 Exploring Machine Learning Models for Biomedical Signal Processing: A Comprehensive Review
2.2 Machine Learning for Audio Processing: From Feature Extraction to Model Selection
2.3 Pre-processing of MRI images suitable for Artificial Intelligence-based Alzheimer's Disease classification
2.4 Machine Learning Models for Text and Image Processing
2.5 Assistive Technology for Neuro-rehabilitation Applications Using Machine Learning Techniques
2.6 Deep Learning Architectures in Computer Vision based Medical Imaging Applications with Emerging Challenges
2.7 Relevance of Artificial Intelligence, Machine Learning, and Biomedical Devices to Healthcare Quality and patient Outcomes
2.8 AI-Based ECG Signal processing applications
2.9 Deep Learning Approach for the Prediction of Skin Diseases

Section 3: Brain computer interfaces (BCI)
3.1 Brain-Computer Interface
3.2 Analysis on Types of Brain-Computer Interfaces for Disabled Person
3.3 Brain Computer Interfaces for elderly and disabled person

Section 4: Real time architecture design for biomedical signals
4.1 Machine learning model implementation with FPGA'S
4.2 Smart Biomedical Devices for Smart Healthcare
4.3 FPGA implementation for explainable machine learning and deep learning models to real time problems

Section 5: Software and Hardware-based Applications for biomedical Informatics
5.1 Software Applications for Biometric Informatics
5.2 Smart Medical Devices: Making Health Care More Intelligent
5.3 Security modules for biomedical signal processing
5.4 Artificial intelligence-based diagnostic tool for cardiovascular risk prediction
5.5 Machine Learning Algorithm approach in risk prediction of Liver Cancer

最近チェックした商品