Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

個数:
電子版価格
¥30,710
  • 電子版あり
  • ポイントキャンペーン

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

  • ウェブストア価格 ¥38,522(本体¥35,020)
  • Academic Press Inc(2024/06発売)
  • 外貨定価 US$ 180.00
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 700pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 184 p.
  • 言語 ENG
  • 商品コード 9780443141416
  • DDC分類 616.100285631

Full Description

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.

In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered.

Contents

1. Introduction to Cardiovascular Signals and Recording System
2. Detection and localization of Myocardial Infarction from 12-channel ECG signals using signal processing and machine learning
3. Machine Learning or deep learning combined with signal processing for the automated detection of atrial fibrillation using ECG signals
4. Automated Detection of bundle branch block from 12-lead ECG signals using signal processing and machine learning
5. Signal processing coupled with Machine learning or deep learning for the automated detection of shockable ventricular arrhythmia using ECG signals
6. Automated detection of hypertrophy from ECG signals using machine learning-based signal processing techniques
7. Machine learning coupled with the signal processing-based approach for the prediction of depression and anxiety using ECG signals
8. Signal processing combined with machine learning for the automated prediction of blood pressure using PPG recordings
9. Automated detection of hypertension from PPG signals using signal processing-based machine learning technique
10. Signal Processing driven machine learning technique for automated emotion recognition using ECG/PPG signals
11. Signal processing coupled with machine learning for heart sound activity detection using PCG signals
12. Automated detection of various heart valve disorders from PCG signals using signal processing and deep learning techniques

最近チェックした商品