エンジニアのための不確実性定量化の基礎<br>Fundamentals of Uncertainty Quantification for Engineers : Methods and Models

個数:

エンジニアのための不確実性定量化の基礎
Fundamentals of Uncertainty Quantification for Engineers : Methods and Models

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 434 p.
  • 言語 ENG
  • 商品コード 9780443136610
  • DDC分類 620.0015118

Full Description

Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples and implementation details to reinforce the concepts outlined in the book. Sections start with an introduction to the history of probability theory and an overview of recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of copula, Monte Carlo sampling, Markov chain Monte Carlo, polynomial regression, Gaussian process regression, polynomial chaos expansion, stochastic collocation, Bayesian inference, modelform uncertainty, multi-fidelity modeling, model validation, local and global sensitivity analyses, linear and nonlinear dimensionality reduction are included. Advanced UQ methods are also introduced, including stochastic processes, stochastic differential equations, random fields, fractional stochastic differential equations, hidden Markov model, linear Gaussian state space model, as well as non-probabilistic methods such as robust Bayesian analysis, Dempster-Shafer theory, imprecise probability, and interval probability. The book also includes example applications in multiscale modeling, reliability, fatigue, materials design, machine learning, and decision making.

Contents

PART 1 Fundamentals of uncertainty quantification
1. Uncertainty quantification for engineering decision making
2. Probability and statistics in uncertainty quantification
3. Sampling methods in uncertainty quantification 85
4. Surrogate modeling in uncertainty quantification
5. Stochastic expansion methods in uncertainty quantification
6. Bayesian inference in uncertainty quantification
7. Sensitivity analysis in uncertainty quantification
8. Linear and nonlinear dimensionality reduction techniques in uncertainty quantification
9. Applications of uncertainty quantification in engineering

PART 2 Advanced topics of uncertainty quantification
10. Stochastic processes in uncertainty quantification
11. Markov models in uncertainty quantification
12. Nonprobabilistic methods in uncertainty quantification

最近チェックした商品