Next Generation eHealth : Applied Data Science, Machine Learning and Extreme Computational Intelligence (Next Generation Technology Driven Personalized Medicine and Smart Healthcare)

個数:

Next Generation eHealth : Applied Data Science, Machine Learning and Extreme Computational Intelligence (Next Generation Technology Driven Personalized Medicine and Smart Healthcare)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 338 p.
  • 言語 ENG
  • 商品コード 9780443136191
  • DDC分類 610.28563

Full Description

Next Generation eHealth: Applied Data Science, Machine Learning and Extreme Computational Intelligence discusses the emergence, the impact, and the potential of sophisticated computational capabilities in healthcare. This book provides useful therapeutic targets to improve diagnosis, therapies, and prognosis of diseases, as well as helping with the establishment of better and more efficient next-generation medicine and medical systems. Machine learning as a field greatly contributes to next-generation medical research with the goal of improving medicine practices and medical Systems. As a contributing factor to better health outcomes, this book highlights the need for advanced training of professionals from various health areas, clinicians, educators, and social professionals who deal with patients. Content illustrates current issues and future promises as they pertain to all stakeholders, including informaticians, professionals in diagnostics, key industry experts in biotech, pharma, administrators, clinicians, patients, educators, students, health professionals, social scientists and legislators, health providers, advocacy groups, and more. With a focus on machine learning, deep learning, and neural networks, this volume communicates in an integrated, fresh, and novel way the impact of data science and computational intelligence to diverse audiences.

Contents

1. The challenges for the next generation digital health: The disruptive character of Artificial Intelligence
2. Data governance in healthcare organizations
3. Enhancing patient welfare through responsible and AI-driven healthcare innovation: Progress made in OECD countries and the case of Greece
4. The economic feasibility of digital health and telerehabilitation
5. Intelligent digital twins: Scenarios, promises, and challenges in medicine and public health
6. Digital twin in cardiology: Navigating the digital landscape for education, global health, and preventive medicine
7. Review of data-driven generative AI models for knowledge extraction from scientific literature in healthcare
8. Approximate computing for energy-efficient processing of biosignals in ehealth care systems
9. Linked open research information on semantic web: Challenges and opportunities for Research information management (RIM) User's
10. The need of E-health and literacy of cancer patients for Healthcare providers
Ruchika Kalra, Meena Gupta and Priya Sharma
11. eHealth concern over fine particulate matter air pollution and brain tumors
12. Wearable devices developed to support dementia detection, monitoring, and intervention
13. How artificial intelligence affects the future of pharmacy practice?
14. Designing robust and resilient data strategy in health clusters (HCs): Use case identification for efficiency and performance enhancement
15. Digital health as a bold contribution to sustainable and social inclusive development

最近チェックした商品