Numerical Linear Algebra with Applications : Using MATLAB and Octave (2ND)

個数:

Numerical Linear Algebra with Applications : Using MATLAB and Octave (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 678 p.
  • 言語 ENG
  • 商品コード 9780443134760
  • DDC分類 512.5

Full Description

Numerical Linear Algebra with Applications: Using MATLAB and Octave, Second Edition provides practical knowledge on modern computational techniques for the numerical solution of linear algebra problems. The book offers a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions. Useful to readers regardless of background, the text begins with six introductory courses to provide background for those who haven't taken applied or theoretical linear algebra. This approach offers a thorough explanation of the issues and methods for practical computing using MATLAB as the vehicle for computation.

Appropriate for advanced undergraduate and early graduate courses on numerical linear algebra, this useful textbook explores numerous applications to engineering and science.

Contents

1. Matrices
2. Linear equations
3. Subspaces
4. Determinants
5. Eigenvalues and eigenvectors
6. Orthogonal vectors and matrices
7. Vector and matrix norms
8. Floating point arithmetic
9. Algorithms
10. Conditioning of problems and stability of algorithms
11. Gaussian elimination and the LU decomposition
12. Linear system applications
13. Important special systems
14. Gram-Schmidt decomposition
15. The singular value decomposition
16. Least-squares problems
17. Implementing the QR factorization
18. The algebraic eigenvalue problem
19. The symmetric eigenvalue problem
20. Basic iterative methods
21. Krylov subspace methods
22. Large sparse eigenvalue problems
23. Computing the singular value decomposition